A program to recognize and reward our most engaged community members
<?xml version="1.0" encoding="UTF-8"?><process version="10.3.001"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="10.3.001" expanded="true" name="Process"> <parameter key="logverbosity" value="init"/> <parameter key="random_seed" value="2001"/> <parameter key="send_mail" value="never"/> <parameter key="notification_email" value=""/> <parameter key="process_duration_for_mail" value="30"/> <parameter key="encoding" value="SYSTEM"/> <process expanded="true"> <operator activated="true" class="read_csv" compatibility="10.2.000" expanded="true" height="68" name="Read CSV (4)" width="90" x="45" y="34"> <parameter key="csv_file" value="C:/Users/rjones/Downloads/airplane_cleaned.csv"/> <parameter key="column_separators" value=";"/> <parameter key="trim_lines" value="false"/> <parameter key="multiline_text" value="false"/> <parameter key="use_quotes" value="true"/> <parameter key="quotes_character" value="""/> <parameter key="escape_character" value="\"/> <parameter key="skip_comments" value="true"/> <parameter key="comment_characters" value="#"/> <parameter key="starting_row" value="1"/> <parameter key="parse_numbers" value="true"/> <parameter key="decimal_character" value="."/> <parameter key="grouped_digits" value="false"/> <parameter key="grouping_character" value=","/> <parameter key="infinity_representation" value=""/> <parameter key="date_format" value=""/> <parameter key="use_header_row" value="true"/> <parameter key="header_row" value="1"/> <parameter key="first_row_as_names" value="true"/> <list key="annotations"/> <parameter key="time_zone" value="SYSTEM"/> <parameter key="locale" value="English (United States)"/> <parameter key="encoding" value="windows-1252"/> <parameter key="read_all_values_as_polynominal" value="false"/> <list key="data_set_meta_data_information"> <parameter key="0" value="Gender.true.polynominal.attribute"/> <parameter key="1" value="Age.true.real.attribute"/> <parameter key="2" value="Customer Type.true.polynominal.attribute"/> <parameter key="3" value="Type of Travel.true.polynominal.attribute"/> <parameter key="4" value="Class.true.polynominal.attribute"/> <parameter key="5" value="Flight Distance.true.real.attribute"/> <parameter key="6" value="Departure and Arrival Time Convenience.true.real.attribute"/> <parameter key="7" value="Ease of Online Booking.true.real.attribute"/> <parameter key="8" value="Check-in Service.true.real.attribute"/> <parameter key="9" value="Online Boarding.true.real.attribute"/> <parameter key="10" value="Gate Location.true.real.attribute"/> <parameter key="11" value="On-board Service.true.real.attribute"/> <parameter key="12" value="Seat Comfort.true.real.attribute"/> <parameter key="13" value="Leg Room Service.true.real.attribute"/> <parameter key="14" value="Cleanliness.true.real.attribute"/> <parameter key="15" value="Food and Drink.true.real.attribute"/> <parameter key="16" value="In-flight Service.true.real.attribute"/> <parameter key="17" value="In-flight Wifi Service.true.real.attribute"/> <parameter key="18" value="In-flight Entertainment.true.real.attribute"/> <parameter key="19" value="Baggage Handling.true.real.attribute"/> <parameter key="20" value="Satisfaction.true.integer.attribute"/> </list> <parameter key="read_not_matching_values_as_missings" value="false"/> </operator> <operator activated="true" class="python_scripting:execute_python" compatibility="10.0.001" expanded="true" height="103" name="Execute Python (2)" width="90" x="179" y="34"> <parameter key="script" value="import pandas as pd from sklearn.linear_model import Lasso from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error def rm_main(data): # Load your data target_column = 'Satisfaction' feature_columns = ['Age', 'Flight Distance', 'In-flight Wifi Service', 'Departure and Arrival Time Convenience', 'Ease of Online Booking', 'Gate Location', 'Food and Drink', 'Online Boarding', 'Seat Comfort', 'In-flight Entertainment', 'On-board Service', 'Leg Room Service', 'Baggage Handling', 'Check-in Service', 'In-flight Service', 'Cleanliness'] # Split the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(data[feature_columns], data[target_column], test_size=0.2, random_state=42) # Initialize the Lasso Regression model lasso_model = Lasso(alpha=0.1) # Fit the model on the training data lasso_model.fit(X_train, y_train) # Make predictions on the test data predictions = lasso_model.predict(X_test) # Create a data frame with the results results_df = pd.DataFrame({'Actual': y_test, 'Predicted': predictions}) results_df.to_csv('output.csv', index=False) # Log the coefficients and intercept print("Coefficients:", lasso_model.coef_) print("Intercept:", lasso_model.intercept_) print(type(lasso_model.coef_)) # Output the coefficients return pd.DataFrame(lasso_model.coef_)"/> <parameter key="notebook_cell_tag_filter" value=""/> <parameter key="use_default_python" value="true"/> <parameter key="package_manager" value="conda (anaconda)"/> <parameter key="use_macros" value="false"/> </operator> <connect from_op="Read CSV (4)" from_port="output" to_op="Execute Python (2)" to_port="input 1"/> <connect from_op="Execute Python (2)" from_port="output 1" to_port="result 1"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> </process> </operator> </process>