Extract and save the items of each cluster in an Excel file
Hello
I kmeans clustered
I want to save the items of each cluster in an Excel file, but I do not know how to do it.
And
Is there a possibility of fuzzy clustering in the program?
Thanks
Answers
-
Hi @ahootanha,
To answer to your first question, one method is to use the Filter Examples and Write Excel operators.
Here an example of process with 3 clusters :
<?xml version="1.0" encoding="UTF-8"?><process version="8.1.000">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="8.1.000" expanded="true" name="Process">
<process expanded="true">
<operator activated="true" class="retrieve" compatibility="8.1.000" expanded="true" height="68" name="Retrieve Iris" width="90" x="112" y="34">
<parameter key="repository_entry" value="//Samples/data/Iris"/>
</operator>
<operator activated="true" class="concurrency:k_means" compatibility="8.1.000" expanded="true" height="82" name="Clustering" width="90" x="313" y="34">
<parameter key="k" value="3"/>
</operator>
<operator activated="true" class="filter_examples" compatibility="8.1.000" expanded="true" height="103" name="Filter Examples" width="90" x="514" y="34">
<list key="filters_list">
<parameter key="filters_entry_key" value="cluster.equals.cluster_0"/>
</list>
</operator>
<operator activated="true" class="write_excel" compatibility="8.1.000" expanded="true" height="82" name="Write Excel" width="90" x="715" y="34">
<parameter key="excel_file" value="C:\Users\Lionel\Documents\Formations_DataScience\Rapidminer\Tests_Rapidminer\Extract_cluster\cluster_0.xlsx"/>
</operator>
<operator activated="true" class="filter_examples" compatibility="8.1.000" expanded="true" height="103" name="Filter Examples (2)" width="90" x="514" y="187">
<list key="filters_list">
<parameter key="filters_entry_key" value="cluster.equals.cluster_1"/>
</list>
</operator>
<operator activated="true" class="filter_examples" compatibility="8.1.000" expanded="true" height="103" name="Filter Examples (3)" width="90" x="514" y="340">
<list key="filters_list">
<parameter key="filters_entry_key" value="cluster.equals.cluster_2"/>
</list>
</operator>
<operator activated="true" class="write_excel" compatibility="8.1.000" expanded="true" height="82" name="Write Excel (2)" width="90" x="715" y="187">
<parameter key="excel_file" value="C:\Users\Lionel\Documents\Formations_DataScience\Rapidminer\Tests_Rapidminer\Extract_cluster\cluster_1.xlsx"/>
</operator>
<operator activated="true" class="write_excel" compatibility="8.1.000" expanded="true" height="82" name="Write Excel (3)" width="90" x="715" y="340">
<parameter key="excel_file" value="C:\Users\Lionel\Documents\Formations_DataScience\Rapidminer\Tests_Rapidminer\Extract_cluster\cluster_2.xlsx"/>
</operator>
<connect from_op="Retrieve Iris" from_port="output" to_op="Clustering" to_port="example set"/>
<connect from_op="Clustering" from_port="clustered set" to_op="Filter Examples" to_port="example set input"/>
<connect from_op="Filter Examples" from_port="example set output" to_op="Write Excel" to_port="input"/>
<connect from_op="Filter Examples" from_port="original" to_op="Filter Examples (2)" to_port="example set input"/>
<connect from_op="Write Excel" from_port="through" to_port="result 1"/>
<connect from_op="Filter Examples (2)" from_port="example set output" to_op="Write Excel (2)" to_port="input"/>
<connect from_op="Filter Examples (2)" from_port="original" to_op="Filter Examples (3)" to_port="example set input"/>
<connect from_op="Filter Examples (3)" from_port="example set output" to_op="Write Excel (3)" to_port="input"/>
<connect from_op="Write Excel (2)" from_port="through" to_port="result 2"/>
<connect from_op="Write Excel (3)" from_port="through" to_port="result 3"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
<portSpacing port="sink_result 4" spacing="0"/>
</process>
</operator>
</process>To answer to your second question, I don't know what is "fuzzy clustering", but
if you don't know, a priori, the number of cluster(s), you can use the X-Means operator : This model determine
the correct number of cluster(s) based on the Bayesian Information Criteria (BIC).
I hope it helps,
Regards,
Lionel
0 -
Hi again @ahootanha,
To better answer to your first question, you can find here a more flexible process
using the Loop Values operator : it is independant of the number of cluster(s).
<?xml version="1.0" encoding="UTF-8"?><process version="8.1.000">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="8.1.000" expanded="true" name="Process">
<process expanded="true">
<operator activated="true" class="retrieve" compatibility="8.1.000" expanded="true" height="68" name="Retrieve Iris" width="90" x="112" y="34">
<parameter key="repository_entry" value="//Samples/data/Iris"/>
</operator>
<operator activated="true" class="concurrency:k_means" compatibility="8.1.000" expanded="true" height="82" name="Clustering" width="90" x="246" y="34">
<parameter key="k" value="3"/>
</operator>
<operator activated="true" class="concurrency:loop_values" compatibility="8.1.000" expanded="true" height="82" name="Loop Values" width="90" x="447" y="34">
<parameter key="attribute" value="cluster"/>
<process expanded="true">
<operator activated="true" class="filter_examples" compatibility="8.1.000" expanded="true" height="103" name="Filter Examples" width="90" x="246" y="34">
<list key="filters_list">
<parameter key="filters_entry_key" value="cluster.equals.%{loop_value}"/>
</list>
</operator>
<operator activated="true" class="write_excel" compatibility="8.1.000" expanded="true" height="82" name="Write Excel" width="90" x="514" y="34">
<parameter key="excel_file" value="C:\Users\Lionel\Documents\Formations_DataScience\Rapidminer\Tests_Rapidminer\Extract_cluster\%{loop_value}.xlsx"/>
</operator>
<connect from_port="input 1" to_op="Filter Examples" to_port="example set input"/>
<connect from_op="Filter Examples" from_port="example set output" to_op="Write Excel" to_port="input"/>
<connect from_op="Write Excel" from_port="through" to_port="output 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="source_input 2" spacing="0"/>
<portSpacing port="sink_output 1" spacing="0"/>
<portSpacing port="sink_output 2" spacing="0"/>
</process>
</operator>
<connect from_op="Retrieve Iris" from_port="output" to_op="Clustering" to_port="example set"/>
<connect from_op="Clustering" from_port="clustered set" to_op="Loop Values" to_port="input 1"/>
<connect from_op="Loop Values" from_port="output 1" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
</process>
</operator>
</process>Regards,
Lionel
0 -
Hello
thank you very much
But
I do not know where to use these code in my rapidminer program?
Please guide
Send me a screenshot of the implementation of operators
Thanks0 -
@ahootanha did you search for this problem on the threads? It's probably due to the meta-data not propograting correctly. You can type in the attribute name (case sensitive) and it will work.
1