A program to recognize and reward our most engaged community members
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.1.017"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="5.1.017" expanded="true" name="Root"> <description><p> Transformations of the attribute space may ease learning in a way, that simple learning schemes may be able to learn complex functions. This is the basic idea of the kernel trick. But even without kernel based learning schemes the transformation of feature space may be necessary to reach good learning results. </p> <p> RapidMiner offers several different feature selection, construction, and extraction methods. This selection process (the well known forward selection) uses an inner cross validation for performance estimation. This building block serves as fitness evaluation for all candidate feature sets. Since the performance of a certain learning scheme is taken into account we refer to processes of this type as &quot;wrapper approaches&quot;.</p> <p>Additionally the process log operator plots intermediate results. You can inspect them online in the Results tab. Please refer to the visualization sample processes or the RapidMiner tutorial for further details.</p> <p> Try the following: <ul> <li>Start the process and change to &quot;Result&quot; view. There can be a plot selected. Plot the &quot;performance&quot; against the &quot;generation&quot; of the feature selection operator.</li> <li>Select the feature selection operator in the tree view. Change the search directory from forward (forward selection) to backward (backward elimination). Restart the process. All features will be selected.</li> <li>Select the feature selection operator. Right click to open the context menu and repace the operator by another feature selection scheme (for example a genetic algorithm).</li> <li>Have a look at the list of the process log operator. Every time it is applied it collects the specified data. Please refer to the RapidMiner Tutorial for further explanations. After changing the feature selection operator to the genetic algorithm approach, you have to specify the correct values. <table><tr><td><icon>groups/24/visualization</icon></td><td><i>Use the process log operator to log values online.</i></td></tr></table> </li> </ul> </p></description> <process expanded="true" height="995" width="846"> <operator activated="true" class="read_csv" compatibility="5.1.017" expanded="true" height="60" name="Read CSV" width="90" x="45" y="30"> <parameter key="csv_file" value="D:\Promotion\Matlab\Ich\Workspaces\Tag\Zeit\Feature_Set_final.dat"/> <parameter key="column_separators" value=","/> <parameter key="first_row_as_names" value="false"/> <list key="annotations"> <parameter key="0" value="Name"/> </list> <parameter key="encoding" value="windows-1252"/> <list key="data_set_meta_data_information"> <parameter key="0" value="Label.true.binominal.label"/> <parameter key="1" value="a1.true.real.attribute"/> <parameter key="270" value="a270.true.integer.attribute"/> <parameter key="271" value="a271.true.integer.attribute"/> </list> </operator> <operator activated="true" class="optimize_selection" compatibility="5.1.017" expanded="true" height="94" name="FS" width="90" x="179" y="30"> <parameter key="generations_without_improval" value="40"/> <parameter key="limit_number_of_generations" value="true"/> <parameter key="keep_best" value="3"/> <parameter key="normalize_weights" value="false"/> <parameter key="use_local_random_seed" value="true"/> <process expanded="true" height="604" width="748"> <operator activated="true" class="split_validation" compatibility="5.1.017" expanded="true" height="112" name="Validation" width="90" x="112" y="30"> <parameter key="split" value="absolute"/> <parameter key="split_ratio" value="0.95"/> <parameter key="training_set_size" value="2544"/> <parameter key="test_set_size" value="260"/> <parameter key="sampling_type" value="linear sampling"/> <parameter key="use_local_random_seed" value="true"/> <process expanded="true" height="191" width="331"> <operator activated="true" class="naive_bayes" compatibility="5.1.017" expanded="true" height="76" name="Naive Bayes" width="90" x="148" y="30"/> <connect from_port="training" to_op="Naive Bayes" to_port="training set"/> <connect from_op="Naive Bayes" from_port="model" to_port="model"/> <portSpacing port="source_training" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true" height="296" width="346"> <operator activated="true" class="apply_model" compatibility="5.1.017" expanded="true" height="76" name="Applier" width="90" x="45" y="30"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" compatibility="5.1.017" expanded="true" height="76" name="Performance_Validation" width="90" x="179" y="30"> <parameter key="classification_error" value="true"/> <parameter key="weighted_mean_recall" value="true"/> <parameter key="absolute_error" value="true"/> <parameter key="correlation" value="true"/> <list key="class_weights"/> </operator> <connect from_port="model" to_op="Applier" to_port="model"/> <connect from_port="test set" to_op="Applier" to_port="unlabelled data"/> <connect from_op="Applier" from_port="labelled data" to_op="Performance_Validation" to_port="labelled data"/> <connect from_op="Performance_Validation" from_port="performance" to_port="averagable 1"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_averagable 1" spacing="0"/> <portSpacing port="sink_averagable 2" spacing="0"/> </process> </operator> <operator activated="true" class="remember" compatibility="5.1.017" expanded="true" height="60" name="Remember_Model" width="90" x="313" y="120"> <parameter key="name" value="Model_new"/> <parameter key="io_object" value="Model"/> </operator> <operator activated="true" class="log" compatibility="5.1.017" expanded="true" height="76" name="ProcessLog" width="90" x="514" y="30"> <list key="log"> <parameter key="generation" value="operator.FS.value.generation"/> <parameter key="performance" value="operator.FS.value.performance"/> </list> </operator> <connect from_port="example set" to_op="Validation" to_port="training"/> <connect from_op="Validation" from_port="model" to_op="Remember_Model" to_port="store"/> <connect from_op="Validation" from_port="averagable 1" to_op="ProcessLog" to_port="through 1"/> <connect from_op="ProcessLog" from_port="through 1" to_port="performance"/> <portSpacing port="source_example set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_performance" spacing="0"/> </process> </operator> <operator activated="true" class="write_weights" compatibility="5.1.017" expanded="true" height="60" name="Write Weights" width="90" x="514" y="120"> <parameter key="attribute_weights_file" value="C:\Users\Node\daniel_att_weights.wgt"/> </operator> <operator activated="true" class="read_csv" compatibility="5.1.017" expanded="true" height="60" name="Read CSV (2)" width="90" x="246" y="300"> <parameter key="csv_file" value="D:\Promotion\Matlab\Ich\Workspaces\Tag\Zeit\Feature_Set_final_test.dat"/> <parameter key="column_separators" value=","/> <parameter key="first_row_as_names" value="false"/> <list key="annotations"> <parameter key="0" value="Name"/> </list> <parameter key="encoding" value="windows-1252"/> <list key="data_set_meta_data_information"> <parameter key="0" value="Label.true.binominal.label"/> <parameter key="1" value="a1.true.real.attribute"/> <parameter key="268" value="a268.true.real.attribute"/> <parameter key="269" value="a269.true.real.attribute"/> <parameter key="270" value="a270.true.integer.attribute"/> <parameter key="271" value="a271.true.integer.attribute"/> </list> </operator> <operator activated="true" class="recall" compatibility="5.1.017" expanded="true" height="60" name="Recall (2)_Model" width="90" x="246" y="210"> <parameter key="name" value="Model_new"/> <parameter key="io_object" value="Model"/> <parameter key="remove_from_store" value="false"/> </operator> <operator activated="true" class="read_weights" compatibility="5.1.017" expanded="true" height="60" name="AttributeWeightsLoader (3)" width="90" x="380" y="345"> <parameter key="attribute_weights_file" value="C:\Users\Node\daniel_att_weights.wgt"/> </operator> <operator activated="true" class="select_by_weights" compatibility="5.1.017" expanded="true" height="94" name="AttributeWeightSelection (2)" width="90" x="514" y="300"/> <operator activated="true" class="apply_model" compatibility="5.1.017" expanded="true" height="76" name="Apply Model" width="90" x="648" y="255"> <list key="application_parameters"/> </operator> <operator activated="true" class="read_csv" compatibility="5.1.017" expanded="true" height="60" name="Read CSV (3)" width="90" x="246" y="615"> <parameter key="csv_file" value="D:\Promotion\Matlab\Ich\Workspaces\Tag\Zeit\Feature_Set_final_test.dat"/> <parameter key="column_separators" value=","/> <parameter key="first_row_as_names" value="false"/> <list key="annotations"> <parameter key="0" value="Name"/> </list> <parameter key="encoding" value="windows-1252"/> <list key="data_set_meta_data_information"> <parameter key="0" value="Label.true.binominal.label"/> <parameter key="1" value="a1.true.real.attribute"/> <parameter key="2" value="a2.true.real.attribute"/> <parameter key="3" value="a3.true.real.attribute"/> <parameter key="268" value="a268.true.real.attribute"/> <parameter key="269" value="a269.true.real.attribute"/> <parameter key="270" value="a270.true.integer.attribute"/> <parameter key="271" value="a271.true.integer.attribute"/> </list> </operator> <operator activated="true" class="recall" compatibility="5.1.017" expanded="true" height="60" name="Recall (3)_model" width="90" x="246" y="525"> <parameter key="name" value="Model_new"/> <parameter key="io_object" value="Model"/> <parameter key="remove_from_store" value="false"/> </operator> <operator activated="true" class="read_weights" compatibility="5.1.017" expanded="true" height="60" name="AttributeWeightsLoader (2)" width="90" x="380" y="705"> <parameter key="attribute_weights_file" value="C:\Users\Node\daniel_att_weights.wgt"/> </operator> <operator activated="true" class="select_by_weights" compatibility="5.1.017" expanded="true" height="94" name="AttributeWeightSelection (3)" width="90" x="447" y="570"/> <operator activated="true" class="apply_model" compatibility="5.1.017" expanded="true" height="76" name="Apply Model (2)" width="90" x="581" y="525"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" compatibility="5.1.017" expanded="true" height="76" name="Performance_ungesehen" width="90" x="715" y="480"> <parameter key="classification_error" value="true"/> <parameter key="absolute_error" value="true"/> <list key="class_weights"/> </operator> <connect from_op="Read CSV" from_port="output" to_op="FS" to_port="example set in"/> <connect from_op="FS" from_port="example set out" to_port="result 2"/> <connect from_op="FS" from_port="weights" to_op="Write Weights" to_port="input"/> <connect from_op="FS" from_port="performance" to_port="result 1"/> <connect from_op="Write Weights" from_port="through" to_port="result 5"/> <connect from_op="Read CSV (2)" from_port="output" to_op="AttributeWeightSelection (2)" to_port="example set input"/> <connect from_op="Recall (2)_Model" from_port="result" to_op="Apply Model" to_port="model"/> <connect from_op="AttributeWeightsLoader (3)" from_port="output" to_op="AttributeWeightSelection (2)" to_port="weights"/> <connect from_op="AttributeWeightSelection (2)" from_port="example set output" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_port="result 3"/> <connect from_op="Read CSV (3)" from_port="output" to_op="AttributeWeightSelection (3)" to_port="example set input"/> <connect from_op="Recall (3)_model" from_port="result" to_op="Apply Model (2)" to_port="model"/> <connect from_op="AttributeWeightsLoader (2)" from_port="output" to_op="AttributeWeightSelection (3)" to_port="weights"/> <connect from_op="AttributeWeightSelection (3)" from_port="example set output" to_op="Apply Model (2)" to_port="unlabelled data"/> <connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance_ungesehen" to_port="labelled data"/> <connect from_op="Performance_ungesehen" from_port="performance" to_port="result 4"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> <portSpacing port="sink_result 4" spacing="0"/> <portSpacing port="sink_result 5" spacing="0"/> <portSpacing port="sink_result 6" spacing="0"/> </process> </operator></process>
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.2.000"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="5.2.000" expanded="true" name="Root"> <description><p> Transformations of the attribute space may ease learning in a way, that simple learning schemes may be able to learn complex functions. This is the basic idea of the kernel trick. But even without kernel based learning schemes the transformation of feature space may be necessary to reach good learning results. </p> <p> RapidMiner offers several different feature selection, construction, and extraction methods. This selection process (the well known forward selection) uses an inner cross validation for performance estimation. This building block serves as fitness evaluation for all candidate feature sets. Since the performance of a certain learning scheme is taken into account we refer to processes of this type as &quot;wrapper approaches&quot;.</p> <p>Additionally the process log operator plots intermediate results. You can inspect them online in the Results tab. Please refer to the visualization sample processes or the RapidMiner tutorial for further details.</p> <p> Try the following: <ul> <li>Start the process and change to &quot;Result&quot; view. There can be a plot selected. Plot the &quot;performance&quot; against the &quot;generation&quot; of the feature selection operator.</li> <li>Select the feature selection operator in the tree view. Change the search directory from forward (forward selection) to backward (backward elimination). Restart the process. All features will be selected.</li> <li>Select the feature selection operator. Right click to open the context menu and repace the operator by another feature selection scheme (for example a genetic algorithm).</li> <li>Have a look at the list of the process log operator. Every time it is applied it collects the specified data. Please refer to the RapidMiner Tutorial for further explanations. After changing the feature selection operator to the genetic algorithm approach, you have to specify the correct values. <table><tr><td><icon>groups/24/visualization</icon></td><td><i>Use the process log operator to log values online.</i></td></tr></table> </li> </ul> </p></description> <process expanded="true" height="995" width="846"> <operator activated="true" class="read_csv" compatibility="5.2.000" expanded="true" height="60" name="Read CSV" width="90" x="45" y="30"> <parameter key="csv_file" value="D:\Promotion\Matlab\Ich\Workspaces\Tag\Zeit\Feature_Set_final.dat"/> <parameter key="column_separators" value=","/> <parameter key="first_row_as_names" value="false"/> <list key="annotations"> <parameter key="0" value="Name"/> </list> <parameter key="encoding" value="windows-1252"/> <list key="data_set_meta_data_information"> <parameter key="0" value="Label.true.binominal.label"/> <parameter key="1" value="a1.true.real.attribute"/> <parameter key="270" value="a270.true.integer.attribute"/> <parameter key="271" value="a271.true.integer.attribute"/> </list> </operator> <operator activated="true" class="recall" compatibility="5.2.000" expanded="true" height="60" name="Recall (3)_model" width="90" x="45" y="210"> <parameter key="name" value="Model_new"/> <parameter key="io_object" value="Model"/> <parameter key="remove_from_store" value="false"/> </operator> <operator activated="true" class="multiply" compatibility="5.2.000" expanded="true" height="94" name="Multiply" width="90" x="179" y="30"/> <operator activated="true" class="optimize_selection" compatibility="5.2.000" expanded="true" height="94" name="FS" width="90" x="514" y="30"> <parameter key="generations_without_improval" value="40"/> <parameter key="limit_number_of_generations" value="true"/> <parameter key="keep_best" value="3"/> <parameter key="normalize_weights" value="false"/> <parameter key="use_local_random_seed" value="true"/> <process expanded="true" height="604" width="748"> <operator activated="true" class="split_validation" compatibility="5.2.000" expanded="true" height="112" name="Validation" width="90" x="112" y="30"> <parameter key="split" value="absolute"/> <parameter key="split_ratio" value="0.95"/> <parameter key="training_set_size" value="2544"/> <parameter key="test_set_size" value="260"/> <parameter key="sampling_type" value="linear sampling"/> <parameter key="use_local_random_seed" value="true"/> <process expanded="true" height="191" width="331"> <operator activated="true" class="naive_bayes" compatibility="5.2.000" expanded="true" height="76" name="Naive Bayes" width="90" x="148" y="30"/> <connect from_port="training" to_op="Naive Bayes" to_port="training set"/> <connect from_op="Naive Bayes" from_port="model" to_port="model"/> <portSpacing port="source_training" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true" height="296" width="346"> <operator activated="true" class="apply_model" compatibility="5.2.000" expanded="true" height="76" name="Applier" width="90" x="45" y="30"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" compatibility="5.2.000" expanded="true" height="76" name="Performance_Validation" width="90" x="179" y="30"> <parameter key="classification_error" value="true"/> <parameter key="weighted_mean_recall" value="true"/> <parameter key="absolute_error" value="true"/> <parameter key="correlation" value="true"/> <list key="class_weights"/> </operator> <connect from_port="model" to_op="Applier" to_port="model"/> <connect from_port="test set" to_op="Applier" to_port="unlabelled data"/> <connect from_op="Applier" from_port="labelled data" to_op="Performance_Validation" to_port="labelled data"/> <connect from_op="Performance_Validation" from_port="performance" to_port="averagable 1"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_averagable 1" spacing="0"/> <portSpacing port="sink_averagable 2" spacing="0"/> </process> </operator> <operator activated="true" class="remember" compatibility="5.2.000" expanded="true" height="60" name="Remember_Model" width="90" x="313" y="120"> <parameter key="name" value="Model_new"/> <parameter key="io_object" value="Model"/> </operator> <operator activated="true" class="log" compatibility="5.2.000" expanded="true" height="76" name="ProcessLog" width="90" x="514" y="30"> <list key="log"> <parameter key="generation" value="operator.FS.value.generation"/> <parameter key="performance" value="operator.FS.value.performance"/> </list> </operator> <connect from_port="example set" to_op="Validation" to_port="training"/> <connect from_op="Validation" from_port="model" to_op="Remember_Model" to_port="store"/> <connect from_op="Validation" from_port="averagable 1" to_op="ProcessLog" to_port="through 1"/> <connect from_op="ProcessLog" from_port="through 1" to_port="performance"/> <portSpacing port="source_example set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_performance" spacing="0"/> </process> </operator> <operator activated="true" class="select_by_weights" compatibility="5.2.000" expanded="true" height="94" name="AttributeWeightSelection (3)" width="90" x="380" y="255"/> <operator activated="true" class="apply_model" compatibility="5.2.000" expanded="true" height="76" name="Apply Model (2)" width="90" x="514" y="210"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" compatibility="5.2.000" expanded="true" height="76" name="Performance_ungesehen" width="90" x="648" y="210"> <parameter key="classification_error" value="true"/> <parameter key="absolute_error" value="true"/> <list key="class_weights"/> </operator> <connect from_op="Read CSV" from_port="output" to_op="Multiply" to_port="input"/> <connect from_op="Recall (3)_model" from_port="result" to_op="Apply Model (2)" to_port="model"/> <connect from_op="Multiply" from_port="output 1" to_op="FS" to_port="example set in"/> <connect from_op="Multiply" from_port="output 2" to_op="AttributeWeightSelection (3)" to_port="example set input"/> <connect from_op="FS" from_port="example set out" to_port="result 2"/> <connect from_op="FS" from_port="weights" to_op="AttributeWeightSelection (3)" to_port="weights"/> <connect from_op="FS" from_port="performance" to_port="result 1"/> <connect from_op="AttributeWeightSelection (3)" from_port="example set output" to_op="Apply Model (2)" to_port="unlabelled data"/> <connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance_ungesehen" to_port="labelled data"/> <connect from_op="Performance_ungesehen" from_port="performance" to_port="result 3"/> <connect from_op="Performance_ungesehen" from_port="example set" to_port="result 4"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> <portSpacing port="sink_result 4" spacing="0"/> <portSpacing port="sink_result 5" spacing="0"/> </process> </operator></process>
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.2.001"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="5.2.001" expanded="true" name="Root"> <description><p> Transformations of the attribute space may ease learning in a way, that simple learning schemes may be able to learn complex functions. This is the basic idea of the kernel trick. But even without kernel based learning schemes the transformation of feature space may be necessary to reach good learning results. </p> <p> RapidMiner offers several different feature selection, construction, and extraction methods. This selection process (the well known forward selection) uses an inner cross validation for performance estimation. This building block serves as fitness evaluation for all candidate feature sets. Since the performance of a certain learning scheme is taken into account we refer to processes of this type as &quot;wrapper approaches&quot;.</p> <p>Additionally the process log operator plots intermediate results. You can inspect them online in the Results tab. Please refer to the visualization sample processes or the RapidMiner tutorial for further details.</p> <p> Try the following: <ul> <li>Start the process and change to &quot;Result&quot; view. There can be a plot selected. Plot the &quot;performance&quot; against the &quot;generation&quot; of the feature selection operator.</li> <li>Select the feature selection operator in the tree view. Change the search directory from forward (forward selection) to backward (backward elimination). Restart the process. All features will be selected.</li> <li>Select the feature selection operator. Right click to open the context menu and repace the operator by another feature selection scheme (for example a genetic algorithm).</li> <li>Have a look at the list of the process log operator. Every time it is applied it collects the specified data. Please refer to the RapidMiner Tutorial for further explanations. After changing the feature selection operator to the genetic algorithm approach, you have to specify the correct values. <table><tr><td><icon>groups/24/visualization</icon></td><td><i>Use the process log operator to log values online.</i></td></tr></table> </li> </ul> </p></description> <process expanded="true" height="539" width="768"> <operator activated="true" class="read_csv" compatibility="5.2.001" expanded="true" height="60" name="Read CSV" width="90" x="45" y="30"> <parameter key="csv_file" value="D:\Promotion\Matlab\Ich\Workspaces\Tag\Zeit\Feature_Set_final.dat"/> <parameter key="column_separators" value=","/> <parameter key="first_row_as_names" value="false"/> <list key="annotations"> <parameter key="0" value="Name"/> </list> <parameter key="encoding" value="windows-1252"/> <list key="data_set_meta_data_information"> <parameter key="0" value="Label.true.binominal.label"/> <parameter key="1" value="a1.true.real.attribute"/> <parameter key="270" value="a270.true.integer.attribute"/> <parameter key="271" value="a271.true.integer.attribute"/> </list> </operator> <operator activated="true" class="multiply" compatibility="5.2.001" expanded="true" height="94" name="Multiply" width="90" x="179" y="30"/> <operator activated="true" class="optimize_selection" compatibility="5.2.001" expanded="true" height="94" name="FS" width="90" x="380" y="30"> <parameter key="generations_without_improval" value="40"/> <parameter key="limit_number_of_generations" value="true"/> <parameter key="keep_best" value="3"/> <parameter key="normalize_weights" value="false"/> <parameter key="use_local_random_seed" value="true"/> <process expanded="true" height="521" width="433"> <operator activated="true" class="split_validation" compatibility="5.2.001" expanded="true" height="112" name="Validation" width="90" x="112" y="30"> <parameter key="split" value="absolute"/> <parameter key="split_ratio" value="0.95"/> <parameter key="training_set_size" value="2544"/> <parameter key="test_set_size" value="260"/> <parameter key="sampling_type" value="linear sampling"/> <parameter key="use_local_random_seed" value="true"/> <process expanded="true" height="191" width="331"> <operator activated="true" class="naive_bayes" compatibility="5.2.001" expanded="true" height="76" name="Naive Bayes" width="90" x="148" y="30"/> <connect from_port="training" to_op="Naive Bayes" to_port="training set"/> <connect from_op="Naive Bayes" from_port="model" to_port="model"/> <portSpacing port="source_training" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true" height="296" width="346"> <operator activated="true" class="apply_model" compatibility="5.2.001" expanded="true" height="76" name="Applier" width="90" x="45" y="30"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" compatibility="5.2.001" expanded="true" height="76" name="Performance_Validation" width="90" x="179" y="30"> <parameter key="classification_error" value="true"/> <parameter key="weighted_mean_recall" value="true"/> <parameter key="absolute_error" value="true"/> <parameter key="correlation" value="true"/> <list key="class_weights"/> </operator> <connect from_port="model" to_op="Applier" to_port="model"/> <connect from_port="test set" to_op="Applier" to_port="unlabelled data"/> <connect from_op="Applier" from_port="labelled data" to_op="Performance_Validation" to_port="labelled data"/> <connect from_op="Performance_Validation" from_port="performance" to_port="averagable 1"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_averagable 1" spacing="0"/> <portSpacing port="sink_averagable 2" spacing="0"/> </process> </operator> <operator activated="true" class="log" compatibility="5.2.001" expanded="true" height="76" name="ProcessLog" width="90" x="313" y="30"> <list key="log"> <parameter key="generation" value="operator.FS.value.generation"/> <parameter key="performance" value="operator.FS.value.performance"/> </list> </operator> <connect from_port="example set" to_op="Validation" to_port="training"/> <connect from_op="Validation" from_port="averagable 1" to_op="ProcessLog" to_port="through 1"/> <connect from_op="ProcessLog" from_port="through 1" to_port="performance"/> <portSpacing port="source_example set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_performance" spacing="0"/> </process> </operator> <operator activated="true" class="select_by_weights" compatibility="5.2.001" expanded="true" height="94" name="AttributeWeightSelection (3)" width="90" x="179" y="210"/> <operator activated="true" class="naive_bayes" compatibility="5.2.001" expanded="true" height="76" name="Naive Bayes (2)" width="90" x="380" y="210"/> <operator activated="true" class="read_csv" compatibility="5.2.001" expanded="true" height="60" name="Read Test Data" width="90" x="45" y="345"> <parameter key="csv_file" value="D:\Promotion\Matlab\Ich\Workspaces\Tag\Zeit\Feature_Set_final.dat"/> <parameter key="column_separators" value=","/> <parameter key="first_row_as_names" value="false"/> <list key="annotations"> <parameter key="0" value="Name"/> </list> <parameter key="encoding" value="windows-1252"/> <list key="data_set_meta_data_information"> <parameter key="0" value="Label.true.binominal.label"/> <parameter key="1" value="a1.true.real.attribute"/> <parameter key="270" value="a270.true.integer.attribute"/> <parameter key="271" value="a271.true.integer.attribute"/> </list> </operator> <operator activated="true" class="select_by_weights" compatibility="5.2.001" expanded="true" height="94" name="AttributeWeightSelection (2)" width="90" x="380" y="345"/> <operator activated="true" class="apply_model" compatibility="5.2.001" expanded="true" height="76" name="Apply Model (2)" width="90" x="514" y="210"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" compatibility="5.2.001" expanded="true" height="76" name="Performance_ungesehen" width="90" x="648" y="210"> <parameter key="classification_error" value="true"/> <parameter key="absolute_error" value="true"/> <list key="class_weights"/> </operator> <connect from_op="Read CSV" from_port="output" to_op="Multiply" to_port="input"/> <connect from_op="Multiply" from_port="output 1" to_op="FS" to_port="example set in"/> <connect from_op="Multiply" from_port="output 2" to_op="AttributeWeightSelection (3)" to_port="example set input"/> <connect from_op="FS" from_port="example set out" to_port="result 2"/> <connect from_op="FS" from_port="weights" to_op="AttributeWeightSelection (3)" to_port="weights"/> <connect from_op="FS" from_port="performance" to_port="result 1"/> <connect from_op="AttributeWeightSelection (3)" from_port="example set output" to_op="Naive Bayes (2)" to_port="training set"/> <connect from_op="AttributeWeightSelection (3)" from_port="weights" to_op="AttributeWeightSelection (2)" to_port="weights"/> <connect from_op="Naive Bayes (2)" from_port="model" to_op="Apply Model (2)" to_port="model"/> <connect from_op="Read Test Data" from_port="output" to_op="AttributeWeightSelection (2)" to_port="example set input"/> <connect from_op="AttributeWeightSelection (2)" from_port="example set output" to_op="Apply Model (2)" to_port="unlabelled data"/> <connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance_ungesehen" to_port="labelled data"/> <connect from_op="Performance_ungesehen" from_port="performance" to_port="result 3"/> <connect from_op="Performance_ungesehen" from_port="example set" to_port="result 4"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> <portSpacing port="sink_result 4" spacing="0"/> <portSpacing port="sink_result 5" spacing="0"/> </process> </operator></process>
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.1.017"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="5.1.017" expanded="true" name="Root"> <description><p> Transformations of the attribute space may ease learning in a way, that simple learning schemes may be able to learn complex functions. This is the basic idea of the kernel trick. But even without kernel based learning schemes the transformation of feature space may be necessary to reach good learning results. </p> <p> RapidMiner offers several different feature selection, construction, and extraction methods. This selection process (the well known forward selection) uses an inner cross validation for performance estimation. This building block serves as fitness evaluation for all candidate feature sets. Since the performance of a certain learning scheme is taken into account we refer to processes of this type as &quot;wrapper approaches&quot;.</p> <p>Additionally the process log operator plots intermediate results. You can inspect them online in the Results tab. Please refer to the visualization sample processes or the RapidMiner tutorial for further details.</p> <p> Try the following: <ul> <li>Start the process and change to &quot;Result&quot; view. There can be a plot selected. Plot the &quot;performance&quot; against the &quot;generation&quot; of the feature selection operator.</li> <li>Select the feature selection operator in the tree view. Change the search directory from forward (forward selection) to backward (backward elimination). Restart the process. All features will be selected.</li> <li>Select the feature selection operator. Right click to open the context menu and repace the operator by another feature selection scheme (for example a genetic algorithm).</li> <li>Have a look at the list of the process log operator. Every time it is applied it collects the specified data. Please refer to the RapidMiner Tutorial for further explanations. After changing the feature selection operator to the genetic algorithm approach, you have to specify the correct values. <table><tr><td><icon>groups/24/visualization</icon></td><td><i>Use the process log operator to log values online.</i></td></tr></table> </li> </ul> </p></description> <process expanded="true" height="539" width="768"> <operator activated="true" class="read_csv" compatibility="5.1.017" expanded="true" height="60" name="Read CSV" width="90" x="45" y="30"> <parameter key="csv_file" value="D:\Promotion\Matlab\Ich\Workspaces\Tag\Zeit\Feature_Set_final.dat"/> <parameter key="column_separators" value=","/> <parameter key="first_row_as_names" value="false"/> <list key="annotations"> <parameter key="0" value="Name"/> </list> <parameter key="encoding" value="windows-1252"/> <list key="data_set_meta_data_information"> <parameter key="0" value="Label.true.binominal.label"/> <parameter key="1" value="a1.true.real.attribute"/> <parameter key="2" value="a2.true.real.attribute"/> <parameter key="269" value="a269.true.real.attribute"/> <parameter key="270" value="a270.true.integer.attribute"/> <parameter key="271" value="a271.true.integer.attribute"/> </list> </operator> <operator activated="true" class="multiply" compatibility="5.1.017" expanded="true" height="94" name="Multiply" width="90" x="179" y="30"/> <operator activated="true" class="optimize_selection" compatibility="5.1.017" expanded="true" height="94" name="FS" width="90" x="380" y="30"> <parameter key="generations_without_improval" value="40"/> <parameter key="limit_number_of_generations" value="true"/> <parameter key="keep_best" value="3"/> <parameter key="maximum_number_of_generations" value="80"/> <parameter key="normalize_weights" value="false"/> <parameter key="use_local_random_seed" value="true"/> <process expanded="true" height="521" width="433"> <operator activated="true" class="split_validation" compatibility="5.1.017" expanded="true" height="112" name="Validation" width="90" x="112" y="30"> <parameter key="split" value="absolute"/> <parameter key="split_ratio" value="0.95"/> <parameter key="training_set_size" value="2544"/> <parameter key="test_set_size" value="260"/> <parameter key="sampling_type" value="linear sampling"/> <parameter key="use_local_random_seed" value="true"/> <process expanded="true" height="191" width="331"> <operator activated="true" class="linear_discriminant_analysis" compatibility="5.1.017" expanded="true" height="76" name="LDA" width="90" x="136" y="30"/> <connect from_port="training" to_op="LDA" to_port="training set"/> <connect from_op="LDA" from_port="model" to_port="model"/> <portSpacing port="source_training" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true" height="296" width="346"> <operator activated="true" class="apply_model" compatibility="5.1.017" expanded="true" height="76" name="Applier" width="90" x="45" y="30"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" compatibility="5.1.017" expanded="true" height="76" name="Performance_Validation" width="90" x="179" y="30"> <parameter key="classification_error" value="true"/> <parameter key="weighted_mean_recall" value="true"/> <parameter key="absolute_error" value="true"/> <parameter key="correlation" value="true"/> <list key="class_weights"/> </operator> <connect from_port="model" to_op="Applier" to_port="model"/> <connect from_port="test set" to_op="Applier" to_port="unlabelled data"/> <connect from_op="Applier" from_port="labelled data" to_op="Performance_Validation" to_port="labelled data"/> <connect from_op="Performance_Validation" from_port="performance" to_port="averagable 1"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_averagable 1" spacing="0"/> <portSpacing port="sink_averagable 2" spacing="0"/> </process> </operator> <operator activated="true" class="log" compatibility="5.1.017" expanded="true" height="76" name="ProcessLog" width="90" x="313" y="30"> <list key="log"> <parameter key="generation" value="operator.FS.value.generation"/> <parameter key="performance" value="operator.FS.value.performance"/> </list> </operator> <connect from_port="example set" to_op="Validation" to_port="training"/> <connect from_op="Validation" from_port="averagable 1" to_op="ProcessLog" to_port="through 1"/> <connect from_op="ProcessLog" from_port="through 1" to_port="performance"/> <portSpacing port="source_example set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_performance" spacing="0"/> </process> </operator> <operator activated="true" class="select_by_weights" compatibility="5.1.017" expanded="true" height="94" name="AttributeWeightSelection (3)" width="90" x="179" y="210"/> <operator activated="true" class="linear_discriminant_analysis" compatibility="5.1.017" expanded="true" height="76" name="LDA (2)" width="90" x="346" y="210"/> <operator activated="true" class="read_csv" compatibility="5.1.017" expanded="true" height="60" name="Read Test Data" width="90" x="45" y="345"> <parameter key="csv_file" value="D:\Promotion\Matlab\Ich\Workspaces\Tag\Zeit\Feature_Set_final_test.dat"/> <parameter key="column_separators" value=","/> <parameter key="first_row_as_names" value="false"/> <list key="annotations"> <parameter key="0" value="Name"/> </list> <parameter key="encoding" value="windows-1252"/> <list key="data_set_meta_data_information"> <parameter key="0" value="Label.true.binominal.label"/> <parameter key="1" value="a1.true.real.attribute"/> <parameter key="2" value="a2.true.real.attribute"/> <parameter key="3" value="a3.true.real.attribute"/> <parameter key="267" value="a267.true.real.attribute"/> <parameter key="268" value="a268.true.real.attribute"/> <parameter key="269" value="a269.true.real.attribute"/> <parameter key="270" value="a270.true.integer.attribute"/> <parameter key="271" value="a271.true.integer.attribute"/> </list> </operator> <operator activated="true" class="select_by_weights" compatibility="5.1.017" expanded="true" height="94" name="AttributeWeightSelection (2)" width="90" x="380" y="345"/> <operator activated="true" class="apply_model" compatibility="5.1.017" expanded="true" height="76" name="Apply Model (2)" width="90" x="514" y="210"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" compatibility="5.1.017" expanded="true" height="76" name="Performance_ungesehen" width="90" x="648" y="210"> <parameter key="classification_error" value="true"/> <parameter key="absolute_error" value="true"/> <list key="class_weights"/> </operator> <connect from_op="Read CSV" from_port="output" to_op="Multiply" to_port="input"/> <connect from_op="Multiply" from_port="output 1" to_op="FS" to_port="example set in"/> <connect from_op="Multiply" from_port="output 2" to_op="AttributeWeightSelection (3)" to_port="example set input"/> <connect from_op="FS" from_port="example set out" to_port="result 2"/> <connect from_op="FS" from_port="weights" to_op="AttributeWeightSelection (3)" to_port="weights"/> <connect from_op="FS" from_port="performance" to_port="result 1"/> <connect from_op="AttributeWeightSelection (3)" from_port="example set output" to_op="LDA (2)" to_port="training set"/> <connect from_op="AttributeWeightSelection (3)" from_port="weights" to_op="AttributeWeightSelection (2)" to_port="weights"/> <connect from_op="LDA (2)" from_port="model" to_op="Apply Model (2)" to_port="model"/> <connect from_op="Read Test Data" from_port="output" to_op="AttributeWeightSelection (2)" to_port="example set input"/> <connect from_op="AttributeWeightSelection (2)" from_port="example set output" to_op="Apply Model (2)" to_port="unlabelled data"/> <connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance_ungesehen" to_port="labelled data"/> <connect from_op="Performance_ungesehen" from_port="performance" to_port="result 3"/> <connect from_op="Performance_ungesehen" from_port="example set" to_port="result 4"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> <portSpacing port="sink_result 4" spacing="0"/> <portSpacing port="sink_result 5" spacing="0"/> </process> </operator></process>
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.1.017"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="5.1.017" expanded="true" name="Root"> <description><p> Transformations of the attribute space may ease learning in a way, that simple learning schemes may be able to learn complex functions. This is the basic idea of the kernel trick. But even without kernel based learning schemes the transformation of feature space may be necessary to reach good learning results. </p> <p> RapidMiner offers several different feature selection, construction, and extraction methods. This selection process (the well known forward selection) uses an inner cross validation for performance estimation. This building block serves as fitness evaluation for all candidate feature sets. Since the performance of a certain learning scheme is taken into account we refer to processes of this type as &quot;wrapper approaches&quot;.</p> <p>Additionally the process log operator plots intermediate results. You can inspect them online in the Results tab. Please refer to the visualization sample processes or the RapidMiner tutorial for further details.</p> <p> Try the following: <ul> <li>Start the process and change to &quot;Result&quot; view. There can be a plot selected. Plot the &quot;performance&quot; against the &quot;generation&quot; of the feature selection operator.</li> <li>Select the feature selection operator in the tree view. Change the search directory from forward (forward selection) to backward (backward elimination). Restart the process. All features will be selected.</li> <li>Select the feature selection operator. Right click to open the context menu and repace the operator by another feature selection scheme (for example a genetic algorithm).</li> <li>Have a look at the list of the process log operator. Every time it is applied it collects the specified data. Please refer to the RapidMiner Tutorial for further explanations. After changing the feature selection operator to the genetic algorithm approach, you have to specify the correct values. <table><tr><td><icon>groups/24/visualization</icon></td><td><i>Use the process log operator to log values online.</i></td></tr></table> </li> </ul> </p></description> <process expanded="true" height="539" width="768"> <operator activated="true" class="read_csv" compatibility="5.1.017" expanded="true" height="60" name="Read CSV" width="90" x="45" y="30"> <parameter key="csv_file" value="D:\Promotion\Matlab\Ich\Workspaces\Tag\Zeit\Feature_Set_final.dat"/> <parameter key="column_separators" value=","/> <parameter key="first_row_as_names" value="false"/> <list key="annotations"> <parameter key="0" value="Name"/> </list> <parameter key="encoding" value="windows-1252"/> <list key="data_set_meta_data_information"> <parameter key="0" value="Label.true.binominal.label"/> <parameter key="1" value="a1.true.real.attribute"/> <parameter key="269" value="a269.true.real.attribute"/> <parameter key="270" value="a270.true.integer.attribute"/> <parameter key="271" value="a271.true.integer.attribute"/> </list> </operator> <operator activated="true" class="multiply" compatibility="5.1.017" expanded="true" height="94" name="Multiply" width="90" x="179" y="30"/> <operator activated="true" class="optimize_selection" compatibility="5.1.017" expanded="true" height="94" name="FS" width="90" x="380" y="30"> <parameter key="generations_without_improval" value="40"/> <parameter key="limit_number_of_generations" value="true"/> <parameter key="maximum_number_of_generations" value="80"/> <parameter key="normalize_weights" value="false"/> <parameter key="use_local_random_seed" value="true"/> <process expanded="true" height="521" width="433"> <operator activated="true" class="split_validation" compatibility="5.1.017" expanded="true" height="112" name="Validation" width="90" x="112" y="30"> <parameter key="split" value="absolute"/> <parameter key="split_ratio" value="0.95"/> <parameter key="training_set_size" value="2544"/> <parameter key="test_set_size" value="260"/> <parameter key="sampling_type" value="linear sampling"/> <parameter key="use_local_random_seed" value="true"/> <process expanded="true" height="191" width="331"> <operator activated="true" class="linear_discriminant_analysis" compatibility="5.1.017" expanded="true" height="76" name="LDA" width="90" x="136" y="30"/> <connect from_port="training" to_op="LDA" to_port="training set"/> <connect from_op="LDA" from_port="model" to_port="model"/> <portSpacing port="source_training" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true" height="296" width="480"> <operator activated="true" class="apply_model" compatibility="5.1.017" expanded="true" height="76" name="Applier" width="90" x="45" y="30"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" compatibility="5.1.017" expanded="true" height="76" name="Performance_Validation" width="90" x="179" y="30"> <parameter key="classification_error" value="true"/> <parameter key="weighted_mean_recall" value="true"/> <parameter key="absolute_error" value="true"/> <parameter key="correlation" value="true"/> <list key="class_weights"/> </operator> <operator activated="true" class="log" compatibility="5.1.017" expanded="true" height="76" name="ProcessLog" width="90" x="313" y="30"> <list key="log"> <parameter key="generation" value="operator.FS.value.generation"/> <parameter key="performance" value="operator.FS.value.performance"/> </list> </operator> <connect from_port="model" to_op="Applier" to_port="model"/> <connect from_port="test set" to_op="Applier" to_port="unlabelled data"/> <connect from_op="Applier" from_port="labelled data" to_op="Performance_Validation" to_port="labelled data"/> <connect from_op="Performance_Validation" from_port="performance" to_op="ProcessLog" to_port="through 1"/> <connect from_op="ProcessLog" from_port="through 1" to_port="averagable 1"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_averagable 1" spacing="0"/> <portSpacing port="sink_averagable 2" spacing="0"/> </process> </operator> <connect from_port="example set" to_op="Validation" to_port="training"/> <connect from_op="Validation" from_port="averagable 1" to_port="performance"/> <portSpacing port="source_example set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_performance" spacing="0"/> </process> </operator> <operator activated="true" class="read_csv" compatibility="5.1.017" expanded="true" height="60" name="Read Test Data" width="90" x="45" y="345"> <parameter key="csv_file" value="D:\Promotion\Matlab\Ich\Workspaces\Tag\Zeit\Feature_Set_final_test.dat"/> <parameter key="column_separators" value=","/> <parameter key="first_row_as_names" value="false"/> <list key="annotations"> <parameter key="0" value="Name"/> </list> <parameter key="encoding" value="windows-1252"/> <list key="data_set_meta_data_information"> <parameter key="0" value="Label.true.binominal.label"/> <parameter key="1" value="a1.true.real.attribute"/> <parameter key="2" value="a2.true.real.attribute"/> <parameter key="269" value="a269.true.real.attribute"/> <parameter key="270" value="a270.true.integer.attribute"/> <parameter key="271" value="a271.true.integer.attribute"/> </list> </operator> <operator activated="true" class="filter_example_range" compatibility="5.1.017" expanded="true" height="76" name="Filter Example Range" width="90" x="45" y="210"> <parameter key="first_example" value="1"/> <parameter key="last_example" value="2544"/> </operator> <operator activated="true" class="select_by_weights" compatibility="5.1.017" expanded="true" height="94" name="AttributeWeightSelection (3)" width="90" x="179" y="210"/> <operator activated="true" class="linear_discriminant_analysis" compatibility="5.1.017" expanded="true" height="76" name="LDA (2)" width="90" x="346" y="210"/> <operator activated="true" class="select_by_weights" compatibility="5.1.017" expanded="true" height="94" name="AttributeWeightSelection (2)" width="90" x="380" y="345"/> <operator activated="true" class="apply_model" compatibility="5.1.017" expanded="true" height="76" name="Apply Model (2)" width="90" x="514" y="210"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" compatibility="5.1.017" expanded="true" height="76" name="Performance_ungesehen" width="90" x="648" y="210"> <parameter key="classification_error" value="true"/> <parameter key="absolute_error" value="true"/> <list key="class_weights"/> </operator> <connect from_op="Read CSV" from_port="output" to_op="Multiply" to_port="input"/> <connect from_op="Multiply" from_port="output 1" to_op="FS" to_port="example set in"/> <connect from_op="Multiply" from_port="output 2" to_op="Filter Example Range" to_port="example set input"/> <connect from_op="FS" from_port="example set out" to_port="result 2"/> <connect from_op="FS" from_port="weights" to_op="AttributeWeightSelection (3)" to_port="weights"/> <connect from_op="FS" from_port="performance" to_port="result 1"/> <connect from_op="Read Test Data" from_port="output" to_op="AttributeWeightSelection (2)" to_port="example set input"/> <connect from_op="Filter Example Range" from_port="example set output" to_op="AttributeWeightSelection (3)" to_port="example set input"/> <connect from_op="AttributeWeightSelection (3)" from_port="example set output" to_op="LDA (2)" to_port="training set"/> <connect from_op="AttributeWeightSelection (3)" from_port="weights" to_op="AttributeWeightSelection (2)" to_port="weights"/> <connect from_op="LDA (2)" from_port="model" to_op="Apply Model (2)" to_port="model"/> <connect from_op="AttributeWeightSelection (2)" from_port="example set output" to_op="Apply Model (2)" to_port="unlabelled data"/> <connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance_ungesehen" to_port="labelled data"/> <connect from_op="Performance_ungesehen" from_port="performance" to_port="result 3"/> <connect from_op="Performance_ungesehen" from_port="example set" to_port="result 4"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> <portSpacing port="sink_result 4" spacing="0"/> <portSpacing port="sink_result 5" spacing="0"/> </process> </operator></process>
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.2.000"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="5.2.000" expanded="true" name="Root"> <description><p> Transformations of the attribute space may ease learning in a way, that simple learning schemes may be able to learn complex functions. This is the basic idea of the kernel trick. But even without kernel based learning schemes the transformation of feature space may be necessary to reach good learning results. </p> <p> RapidMiner offers several different feature selection, construction, and extraction methods. This selection process (the well known forward selection) uses an inner cross validation for performance estimation. This building block serves as fitness evaluation for all candidate feature sets. Since the performance of a certain learning scheme is taken into account we refer to processes of this type as &quot;wrapper approaches&quot;.</p> <p>Additionally the process log operator plots intermediate results. You can inspect them online in the Results tab. Please refer to the visualization sample processes or the RapidMiner tutorial for further details.</p> <p> Try the following: <ul> <li>Start the process and change to &quot;Result&quot; view. There can be a plot selected. Plot the &quot;performance&quot; against the &quot;generation&quot; of the feature selection operator.</li> <li>Select the feature selection operator in the tree view. Change the search directory from forward (forward selection) to backward (backward elimination). Restart the process. All features will be selected.</li> <li>Select the feature selection operator. Right click to open the context menu and repace the operator by another feature selection scheme (for example a genetic algorithm).</li> <li>Have a look at the list of the process log operator. Every time it is applied it collects the specified data. Please refer to the RapidMiner Tutorial for further explanations. After changing the feature selection operator to the genetic algorithm approach, you have to specify the correct values. <table><tr><td><icon>groups/24/visualization</icon></td><td><i>Use the process log operator to log values online.</i></td></tr></table> </li> </ul> </p></description> <process expanded="true" height="539" width="768"> <operator activated="true" class="read_csv" compatibility="5.2.000" expanded="true" height="60" name="Read CSV" width="90" x="45" y="30"> <parameter key="csv_file" value="D:\Promotion\Matlab\Ich\Workspaces\Tag\Zeit\Feature_Set_final.dat"/> <parameter key="column_separators" value=","/> <parameter key="first_row_as_names" value="false"/> <list key="annotations"> <parameter key="0" value="Name"/> </list> <parameter key="encoding" value="windows-1252"/> <list key="data_set_meta_data_information"> <parameter key="0" value="Label.true.binominal.label"/> <parameter key="1" value="a1.true.real.attribute"/> <parameter key="269" value="a269.true.real.attribute"/> <parameter key="270" value="a270.true.integer.attribute"/> <parameter key="271" value="a271.true.integer.attribute"/> </list> </operator> <operator activated="true" class="multiply" compatibility="5.2.000" expanded="true" height="94" name="Multiply" width="90" x="179" y="30"/> <operator activated="true" class="optimize_selection" compatibility="5.2.000" expanded="true" height="94" name="FS" width="90" x="380" y="30"> <parameter key="generations_without_improval" value="40"/> <parameter key="limit_number_of_generations" value="true"/> <parameter key="maximum_number_of_generations" value="80"/> <parameter key="normalize_weights" value="false"/> <parameter key="use_local_random_seed" value="true"/> <process expanded="true" height="521" width="681"> <operator activated="true" class="split_validation" compatibility="5.2.000" expanded="true" height="112" name="Validation" width="90" x="112" y="30"> <parameter key="split" value="absolute"/> <parameter key="split_ratio" value="0.95"/> <parameter key="training_set_size" value="2544"/> <parameter key="test_set_size" value="260"/> <parameter key="sampling_type" value="linear sampling"/> <parameter key="use_local_random_seed" value="true"/> <process expanded="true" height="191" width="331"> <operator activated="true" class="linear_discriminant_analysis" compatibility="5.2.000" expanded="true" height="76" name="LDA" width="90" x="136" y="30"/> <connect from_port="training" to_op="LDA" to_port="training set"/> <connect from_op="LDA" from_port="model" to_port="model"/> <portSpacing port="source_training" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true" height="296" width="480"> <operator activated="true" class="apply_model" compatibility="5.2.000" expanded="true" height="76" name="Applier" width="90" x="45" y="30"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" compatibility="5.2.000" expanded="true" height="76" name="Performance_Validation" width="90" x="179" y="30"> <parameter key="classification_error" value="true"/> <parameter key="weighted_mean_recall" value="true"/> <parameter key="absolute_error" value="true"/> <parameter key="correlation" value="true"/> <list key="class_weights"/> </operator> <connect from_port="model" to_op="Applier" to_port="model"/> <connect from_port="test set" to_op="Applier" to_port="unlabelled data"/> <connect from_op="Applier" from_port="labelled data" to_op="Performance_Validation" to_port="labelled data"/> <connect from_op="Performance_Validation" from_port="performance" to_port="averagable 1"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_averagable 1" spacing="0"/> <portSpacing port="sink_averagable 2" spacing="0"/> </process> </operator> <operator activated="true" class="log" compatibility="5.2.000" expanded="true" height="76" name="ProcessLog" width="90" x="447" y="30"> <list key="log"> <parameter key="generation" value="operator.FS.value.generation"/> <parameter key="performance" value="operator.Validation.value.performance"/> </list> </operator> <connect from_port="example set" to_op="Validation" to_port="training"/> <connect from_op="Validation" from_port="averagable 1" to_op="ProcessLog" to_port="through 1"/> <connect from_op="ProcessLog" from_port="through 1" to_port="performance"/> <portSpacing port="source_example set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_performance" spacing="0"/> </process> </operator> <operator activated="true" class="read_csv" compatibility="5.2.000" expanded="true" height="60" name="Read Test Data" width="90" x="45" y="345"> <parameter key="csv_file" value="D:\Promotion\Matlab\Ich\Workspaces\Tag\Zeit\Feature_Set_final_test.dat"/> <parameter key="column_separators" value=","/> <parameter key="first_row_as_names" value="false"/> <list key="annotations"> <parameter key="0" value="Name"/> </list> <parameter key="encoding" value="windows-1252"/> <list key="data_set_meta_data_information"> <parameter key="0" value="Label.true.binominal.label"/> <parameter key="1" value="a1.true.real.attribute"/> <parameter key="2" value="a2.true.real.attribute"/> <parameter key="269" value="a269.true.real.attribute"/> <parameter key="270" value="a270.true.integer.attribute"/> <parameter key="271" value="a271.true.integer.attribute"/> </list> </operator> <operator activated="true" class="filter_example_range" compatibility="5.2.000" expanded="true" height="76" name="Filter Example Range" width="90" x="45" y="210"> <parameter key="first_example" value="1"/> <parameter key="last_example" value="2544"/> </operator> <operator activated="true" class="select_by_weights" compatibility="5.2.000" expanded="true" height="94" name="AttributeWeightSelection (3)" width="90" x="179" y="210"/> <operator activated="true" class="linear_discriminant_analysis" compatibility="5.2.000" expanded="true" height="76" name="LDA (2)" width="90" x="346" y="210"/> <operator activated="true" class="select_by_weights" compatibility="5.2.000" expanded="true" height="94" name="AttributeWeightSelection (2)" width="90" x="380" y="345"/> <operator activated="true" class="apply_model" compatibility="5.2.000" expanded="true" height="76" name="Apply Model (2)" width="90" x="514" y="210"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" compatibility="5.2.000" expanded="true" height="76" name="Performance_ungesehen" width="90" x="648" y="210"> <parameter key="classification_error" value="true"/> <parameter key="absolute_error" value="true"/> <list key="class_weights"/> </operator> <connect from_op="Read CSV" from_port="output" to_op="Multiply" to_port="input"/> <connect from_op="Multiply" from_port="output 1" to_op="FS" to_port="example set in"/> <connect from_op="Multiply" from_port="output 2" to_op="Filter Example Range" to_port="example set input"/> <connect from_op="FS" from_port="example set out" to_port="result 2"/> <connect from_op="FS" from_port="weights" to_op="AttributeWeightSelection (3)" to_port="weights"/> <connect from_op="FS" from_port="performance" to_port="result 1"/> <connect from_op="Read Test Data" from_port="output" to_op="AttributeWeightSelection (2)" to_port="example set input"/> <connect from_op="Filter Example Range" from_port="example set output" to_op="AttributeWeightSelection (3)" to_port="example set input"/> <connect from_op="AttributeWeightSelection (3)" from_port="example set output" to_op="LDA (2)" to_port="training set"/> <connect from_op="AttributeWeightSelection (3)" from_port="weights" to_op="AttributeWeightSelection (2)" to_port="weights"/> <connect from_op="LDA (2)" from_port="model" to_op="Apply Model (2)" to_port="model"/> <connect from_op="AttributeWeightSelection (2)" from_port="example set output" to_op="Apply Model (2)" to_port="unlabelled data"/> <connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance_ungesehen" to_port="labelled data"/> <connect from_op="Performance_ungesehen" from_port="performance" to_port="result 3"/> <connect from_op="Performance_ungesehen" from_port="example set" to_port="result 4"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> <portSpacing port="sink_result 4" spacing="0"/> <portSpacing port="sink_result 5" spacing="0"/> </process> </operator></process>
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.1.017"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="5.1.017" expanded="true" name="Root"> <description><p> Transformations of the attribute space may ease learning in a way, that simple learning schemes may be able to learn complex functions. This is the basic idea of the kernel trick. But even without kernel based learning schemes the transformation of feature space may be necessary to reach good learning results. </p> <p> RapidMiner offers several different feature selection, construction, and extraction methods. This selection process (the well known forward selection) uses an inner cross validation for performance estimation. This building block serves as fitness evaluation for all candidate feature sets. Since the performance of a certain learning scheme is taken into account we refer to processes of this type as &quot;wrapper approaches&quot;.</p> <p>Additionally the process log operator plots intermediate results. You can inspect them online in the Results tab. Please refer to the visualization sample processes or the RapidMiner tutorial for further details.</p> <p> Try the following: <ul> <li>Start the process and change to &quot;Result&quot; view. There can be a plot selected. Plot the &quot;performance&quot; against the &quot;generation&quot; of the feature selection operator.</li> <li>Select the feature selection operator in the tree view. Change the search directory from forward (forward selection) to backward (backward elimination). Restart the process. All features will be selected.</li> <li>Select the feature selection operator. Right click to open the context menu and repace the operator by another feature selection scheme (for example a genetic algorithm).</li> <li>Have a look at the list of the process log operator. Every time it is applied it collects the specified data. Please refer to the RapidMiner Tutorial for further explanations. After changing the feature selection operator to the genetic algorithm approach, you have to specify the correct values. <table><tr><td><icon>groups/24/visualization</icon></td><td><i>Use the process log operator to log values online.</i></td></tr></table> </li> </ul> </p></description> <process expanded="true" height="539" width="768"> <operator activated="true" class="read_csv" compatibility="5.1.017" expanded="true" height="60" name="Read CSV" width="90" x="45" y="30"> <parameter key="csv_file" value="D:\Promotion\Matlab\Ich\Workspaces\Tag\Zeit\Feature_Set_final.dat"/> <parameter key="column_separators" value=","/> <parameter key="first_row_as_names" value="false"/> <list key="annotations"> <parameter key="0" value="Name"/> </list> <parameter key="encoding" value="windows-1252"/> <list key="data_set_meta_data_information"> <parameter key="0" value="Label.true.binominal.label"/> <parameter key="1" value="a1.true.real.attribute"/> <parameter key="2" value="a2.true.real.attribute"/> <parameter key="3" value="a3.true.real.attribute"/> <parameter key="4" value="a4.true.real.attribute"/> <parameter key="267" value="a267.true.real.attribute"/> <parameter key="268" value="a268.true.real.attribute"/> <parameter key="269" value="a269.true.real.attribute"/> <parameter key="270" value="a270.true.integer.attribute"/> <parameter key="271" value="a271.true.integer.attribute"/> </list> </operator> <operator activated="true" class="multiply" compatibility="5.1.017" expanded="true" height="94" name="Multiply" width="90" x="179" y="30"/> <operator activated="true" class="read_csv" compatibility="5.1.017" expanded="true" height="60" name="Read Test Data" width="90" x="45" y="345"> <parameter key="csv_file" value="D:\Promotion\Matlab\Ich\Workspaces\Tag\Zeit\Feature_Set_final_test.dat"/> <parameter key="column_separators" value=","/> <parameter key="first_row_as_names" value="false"/> <list key="annotations"> <parameter key="0" value="Name"/> </list> <parameter key="encoding" value="windows-1252"/> <list key="data_set_meta_data_information"> <parameter key="0" value="Label.true.binominal.label"/> <parameter key="1" value="a1.true.real.attribute"/> <parameter key="2" value="a2.true.real.attribute"/> <parameter key="3" value="a3.true.real.attribute"/> <parameter key="268" value="a268.true.real.attribute"/> <parameter key="269" value="a269.true.real.attribute"/> <parameter key="270" value="a270.true.integer.attribute"/> <parameter key="271" value="a271.true.integer.attribute"/> </list> </operator> <operator activated="true" class="filter_example_range" compatibility="5.1.017" expanded="true" height="76" name="Filter Example Range" width="90" x="45" y="210"> <parameter key="first_example" value="1"/> <parameter key="last_example" value="2544"/> </operator> <operator activated="true" class="filter_example_range" compatibility="5.1.017" expanded="true" height="76" name="Filter Example Range (2)" width="90" x="313" y="30"> <parameter key="first_example" value="1"/> <parameter key="last_example" value="2544"/> </operator> <operator activated="true" class="optimize_selection" compatibility="5.1.017" expanded="true" height="94" name="FS" width="90" x="514" y="30"> <parameter key="generations_without_improval" value="40"/> <parameter key="limit_number_of_generations" value="true"/> <parameter key="maximum_number_of_generations" value="80"/> <parameter key="normalize_weights" value="false"/> <parameter key="use_local_random_seed" value="true"/> <process expanded="true" height="521" width="480"> <operator activated="true" class="x_validation" compatibility="5.1.017" expanded="true" height="112" name="Validation" width="90" x="112" y="30"> <parameter key="use_local_random_seed" value="true"/> <process expanded="true" height="258" width="353"> <operator activated="true" class="linear_discriminant_analysis" compatibility="5.1.017" expanded="true" height="76" name="LDA" width="90" x="136" y="30"/> <connect from_port="training" to_op="LDA" to_port="training set"/> <connect from_op="LDA" from_port="model" to_port="model"/> <portSpacing port="source_training" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true" height="258" width="353"> <operator activated="true" class="apply_model" compatibility="5.1.017" expanded="true" height="76" name="Applier" width="90" x="45" y="30"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" compatibility="5.1.017" expanded="true" height="76" name="Performance_Validation" width="90" x="179" y="30"> <parameter key="classification_error" value="true"/> <parameter key="weighted_mean_recall" value="true"/> <parameter key="absolute_error" value="true"/> <parameter key="correlation" value="true"/> <list key="class_weights"/> </operator> <connect from_port="model" to_op="Applier" to_port="model"/> <connect from_port="test set" to_op="Applier" to_port="unlabelled data"/> <connect from_op="Applier" from_port="labelled data" to_op="Performance_Validation" to_port="labelled data"/> <connect from_op="Performance_Validation" from_port="performance" to_port="averagable 1"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_averagable 1" spacing="0"/> <portSpacing port="sink_averagable 2" spacing="0"/> </process> </operator> <operator activated="true" class="log" compatibility="5.1.017" expanded="true" height="76" name="ProcessLog" width="90" x="380" y="75"> <list key="log"> <parameter key="generation" value="operator.FS.value.generation"/> <parameter key="performance" value="operator.Validation.value.performance"/> </list> </operator> <connect from_port="example set" to_op="Validation" to_port="training"/> <connect from_op="Validation" from_port="averagable 1" to_op="ProcessLog" to_port="through 1"/> <connect from_op="ProcessLog" from_port="through 1" to_port="performance"/> <portSpacing port="source_example set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_performance" spacing="0"/> </process> </operator> <operator activated="true" class="select_by_weights" compatibility="5.1.017" expanded="true" height="94" name="AttributeWeightSelection (3)" width="90" x="179" y="210"/> <operator activated="true" class="linear_discriminant_analysis" compatibility="5.1.017" expanded="true" height="76" name="LDA (2)" width="90" x="346" y="210"/> <operator activated="true" class="select_by_weights" compatibility="5.1.017" expanded="true" height="94" name="AttributeWeightSelection (2)" width="90" x="380" y="345"/> <operator activated="true" class="apply_model" compatibility="5.1.017" expanded="true" height="76" name="Apply Model (2)" width="90" x="514" y="210"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" compatibility="5.1.017" expanded="true" height="76" name="Performance_ungesehen" width="90" x="648" y="210"> <parameter key="classification_error" value="true"/> <parameter key="absolute_error" value="true"/> <list key="class_weights"/> </operator> <connect from_op="Read CSV" from_port="output" to_op="Multiply" to_port="input"/> <connect from_op="Multiply" from_port="output 1" to_op="Filter Example Range" to_port="example set input"/> <connect from_op="Multiply" from_port="output 2" to_op="Filter Example Range (2)" to_port="example set input"/> <connect from_op="Read Test Data" from_port="output" to_op="AttributeWeightSelection (2)" to_port="example set input"/> <connect from_op="Filter Example Range" from_port="example set output" to_op="AttributeWeightSelection (3)" to_port="example set input"/> <connect from_op="Filter Example Range (2)" from_port="example set output" to_op="FS" to_port="example set in"/> <connect from_op="FS" from_port="example set out" to_port="result 2"/> <connect from_op="FS" from_port="weights" to_op="AttributeWeightSelection (3)" to_port="weights"/> <connect from_op="FS" from_port="performance" to_port="result 1"/> <connect from_op="AttributeWeightSelection (3)" from_port="example set output" to_op="LDA (2)" to_port="training set"/> <connect from_op="AttributeWeightSelection (3)" from_port="weights" to_op="AttributeWeightSelection (2)" to_port="weights"/> <connect from_op="LDA (2)" from_port="model" to_op="Apply Model (2)" to_port="model"/> <connect from_op="AttributeWeightSelection (2)" from_port="example set output" to_op="Apply Model (2)" to_port="unlabelled data"/> <connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance_ungesehen" to_port="labelled data"/> <connect from_op="Performance_ungesehen" from_port="performance" to_port="result 3"/> <connect from_op="Performance_ungesehen" from_port="example set" to_port="result 4"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> <portSpacing port="sink_result 4" spacing="0"/> <portSpacing port="sink_result 5" spacing="0"/> </process> </operator></process>