A program to recognize and reward our most engaged community members
ID CLU (label) LLD LLS ILD ILM DEN CNL AC GR POR PERM RQI SO SH CEC Swi Qv1 oilwithlowRES 6.20 5.85 3.76 4.50 2.58 16.60 269.90 89.86 28.09 1.62 2.40 29.67 31.63 6.92 33.62 0.67
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.0"> <context> <input> <location/> </input> <output> <location/> <location/> <location/> <location/> </output> <macros/> </context> <operator activated="true" class="process" expanded="true" name="Process"> <parameter key="logverbosity" value="error"/> <parameter key="encoding" value="GB2312"/> <process expanded="true" height="391" width="915"> <operator activated="true" class="subprocess" expanded="true" height="94" name="Train/Test Sets" width="90" x="45" y="120"> <process expanded="true"> <operator activated="true" class="read_csv" expanded="true" height="60" name="Read CSV" width="90" x="45" y="165"> <description>Removed "(label)" from "CLU (label)"</description> <parameter key="file_name" value="C:\Documents and Settings\Alien\My Documents\rm_workspace\R5 Forum\HU.csv"/> </operator> <operator activated="true" class="set_role" expanded="true" height="76" name="Set ID" width="90" x="179" y="165"> <parameter key="name" value="ID"/> <parameter key="target_role" value="id"/> </operator> <operator activated="true" class="set_role" expanded="true" height="76" name="Set Label" width="90" x="313" y="165"> <parameter key="name" value="CLU"/> <parameter key="target_role" value="label"/> </operator> <operator activated="true" class="normalize" expanded="true" height="94" name="Normalize" width="90" x="447" y="165"/> <operator activated="true" class="split_data" expanded="true" height="94" name="Split Data 90-10" width="90" x="581" y="165"> <enumeration key="partitions"> <parameter key="ratio" value="0.9"/> <parameter key="ratio" value="0.1"/> </enumeration> <parameter key="sampling_type" value="stratified sampling"/> </operator> <connect from_op="Read CSV" from_port="output" to_op="Set ID" to_port="example set input"/> <connect from_op="Set ID" from_port="example set output" to_op="Set Label" to_port="example set input"/> <connect from_op="Set Label" from_port="example set output" to_op="Normalize" to_port="example set input"/> <connect from_op="Normalize" from_port="example set output" to_op="Split Data 90-10" to_port="example set"/> <connect from_op="Split Data 90-10" from_port="partition 1" to_port="out 1"/> <connect from_op="Split Data 90-10" from_port="partition 2" to_port="out 2"/> <portSpacing port="source_in 1" spacing="0"/> <portSpacing port="sink_out 1" spacing="0"/> <portSpacing port="sink_out 2" spacing="0"/> <portSpacing port="sink_out 3" spacing="0"/> </process> </operator> <operator activated="true" class="optimize_parameters_grid" expanded="true" height="112" name="Optimise C and Gamma on treaining set" width="90" x="246" y="30"> <list key="parameters"> <parameter key="SVM.C" value="[0.0;1000;10;linear]"/> <parameter key="SVM.gamma" value="[0.0;1;10;linear]"/> </list> <process expanded="true"> <operator activated="true" class="x_validation" expanded="true" height="112" name="Validation" width="90" x="313" y="30"> <process expanded="true"> <operator activated="true" class="support_vector_machine_libsvm" expanded="true" height="76" name="SVM" width="90" x="130" y="30"> <parameter key="gamma" value="1.0"/> <parameter key="C" value="1000.0"/> <list key="class_weights"/> <parameter key="shrinking" value="false"/> </operator> <connect from_port="training" to_op="SVM" to_port="training set"/> <connect from_op="SVM" from_port="model" to_port="model"/> <portSpacing port="source_training" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true"> <operator activated="true" class="apply_model" expanded="true" height="76" name="Apply Model" width="90" x="45" y="30"> <list key="application_parameters"/> <parameter key="create_view" value="true"/> </operator> <operator activated="true" class="performance" expanded="true" height="76" name="Performance" width="90" x="179" y="30"> <parameter key="use_example_weights" value="false"/> </operator> <connect from_port="model" to_op="Apply Model" to_port="model"/> <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/> <connect from_op="Performance" from_port="performance" to_port="averagable 1"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_averagable 1" spacing="0"/> <portSpacing port="sink_averagable 2" spacing="0"/> </process> </operator> <connect from_port="input 1" to_op="Validation" to_port="training"/> <connect from_op="Validation" from_port="model" to_port="result 1"/> <connect from_op="Validation" from_port="averagable 1" to_port="performance"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="source_input 2" spacing="0"/> <portSpacing port="sink_performance" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> </process> </operator> <operator activated="true" class="set_parameters" expanded="true" height="60" name="Set SVM2 parameters" width="90" x="447" y="75"> <list key="name_map"> <parameter key="SVM" value="SVM2"/> </list> </operator> <operator activated="true" class="support_vector_machine_libsvm" expanded="true" height="76" name="SVM2" width="90" x="246" y="165"> <parameter key="gamma" value="0.8"/> <parameter key="C" value="800.0"/> <list key="class_weights"/> </operator> <operator activated="true" class="apply_model" expanded="true" height="76" name="Apply SVM2 on test set" width="90" x="447" y="165"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" expanded="true" height="76" name="Test Results" width="90" x="581" y="165"> <list key="class_weights"/> </operator> <connect from_op="Train/Test Sets" from_port="out 1" to_op="Optimise C and Gamma on treaining set" to_port="input 1"/> <connect from_op="Train/Test Sets" from_port="out 2" to_op="SVM2" to_port="training set"/> <connect from_op="Optimise C and Gamma on treaining set" from_port="performance" to_port="result 1"/> <connect from_op="Optimise C and Gamma on treaining set" from_port="parameter" to_op="Set SVM2 parameters" to_port="parameter set"/> <connect from_op="SVM2" from_port="model" to_op="Apply SVM2 on test set" to_port="model"/> <connect from_op="SVM2" from_port="exampleSet" to_op="Apply SVM2 on test set" to_port="unlabelled data"/> <connect from_op="Apply SVM2 on test set" from_port="labelled data" to_op="Test Results" to_port="labelled data"/> <connect from_op="Apply SVM2 on test set" from_port="model" to_port="result 2"/> <connect from_op="Test Results" from_port="performance" to_port="result 3"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> <portSpacing port="sink_result 4" spacing="0"/> </process> </operator></process>
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.0"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" expanded="true" name="Process"> <parameter key="logverbosity" value="error"/> <parameter key="encoding" value="GB2312"/> <process expanded="true" height="391" width="915"> <operator activated="true" class="retrieve" expanded="true" height="60" name="Retrieve" width="90" x="45" y="30"> <parameter key="repository_entry" value="//Samples/data/Sonar"/> </operator> <operator activated="true" class="normalize" expanded="true" height="94" name="Normalize" width="90" x="179" y="30"/> <operator activated="true" class="multiply" expanded="true" height="94" name="Multiply" width="90" x="313" y="30"/> <operator activated="true" class="support_vector_machine_libsvm" expanded="true" height="76" name="SVM2" width="90" x="514" y="165"> <parameter key="gamma" value="0.01"/> <parameter key="C" value="1000"/> <list key="class_weights"/> </operator> <operator activated="true" class="apply_model" expanded="true" height="76" name="Apply SVM2 on test set" width="90" x="648" y="165"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" expanded="true" height="76" name="Test Results" width="90" x="782" y="165"> <list key="class_weights"/> </operator> <operator activated="true" class="optimize_parameters_grid" expanded="true" height="112" name="Optimise C and Gamma on treaining set" width="90" x="514" y="30"> <list key="parameters"> <parameter key="SVM.C" value="0.00001,0.0001,0.001,0.01,0.1,1,10,100,1000,10000,100000"/> <parameter key="SVM.gamma" value="0.00001,0.0001,0.001,0.01,0.1,1,10,100,1000,10000,100000"/> </list> <process expanded="true" height="510" width="991"> <operator activated="true" class="x_validation" expanded="true" height="112" name="Validation" width="90" x="313" y="30"> <process expanded="true" height="510" width="470"> <operator activated="true" class="support_vector_machine_libsvm" expanded="true" height="76" name="SVM" width="90" x="130" y="30"> <parameter key="gamma" value="100000"/> <parameter key="C" value="100000"/> <list key="class_weights"/> <parameter key="shrinking" value="false"/> </operator> <connect from_port="training" to_op="SVM" to_port="training set"/> <connect from_op="SVM" from_port="model" to_port="model"/> <portSpacing port="source_training" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true" height="510" width="470"> <operator activated="true" class="apply_model" expanded="true" height="76" name="Apply Model" width="90" x="45" y="30"> <list key="application_parameters"/> <parameter key="create_view" value="true"/> </operator> <operator activated="true" class="performance" expanded="true" height="76" name="Performance" width="90" x="179" y="30"> <parameter key="use_example_weights" value="false"/> </operator> <connect from_port="model" to_op="Apply Model" to_port="model"/> <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/> <connect from_op="Performance" from_port="performance" to_port="averagable 1"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_averagable 1" spacing="0"/> <portSpacing port="sink_averagable 2" spacing="0"/> </process> </operator> <connect from_port="input 1" to_op="Validation" to_port="training"/> <connect from_op="Validation" from_port="model" to_port="result 1"/> <connect from_op="Validation" from_port="averagable 1" to_port="performance"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="source_input 2" spacing="0"/> <portSpacing port="sink_performance" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> </process> </operator> <operator activated="true" class="set_parameters" expanded="true" height="60" name="Set SVM2 parameters" width="90" x="648" y="75"> <list key="name_map"> <parameter key="SVM" value="SVM2"/> </list> </operator> <connect from_op="Retrieve" from_port="output" to_op="Normalize" to_port="example set input"/> <connect from_op="Normalize" from_port="example set output" to_op="Multiply" to_port="input"/> <connect from_op="Multiply" from_port="output 1" to_op="Optimise C and Gamma on treaining set" to_port="input 1"/> <connect from_op="Multiply" from_port="output 2" to_op="SVM2" to_port="training set"/> <connect from_op="SVM2" from_port="model" to_op="Apply SVM2 on test set" to_port="model"/> <connect from_op="SVM2" from_port="exampleSet" to_op="Apply SVM2 on test set" to_port="unlabelled data"/> <connect from_op="Apply SVM2 on test set" from_port="labelled data" to_op="Test Results" to_port="labelled data"/> <connect from_op="Test Results" from_port="performance" to_port="result 2"/> <connect from_op="Optimise C and Gamma on treaining set" from_port="performance" to_port="result 1"/> <connect from_op="Optimise C and Gamma on treaining set" from_port="parameter" to_op="Set SVM2 parameters" to_port="parameter set"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> </process> </operator></process>
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.0"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" expanded="true" name="Process"> <parameter key="logverbosity" value="error"/> <parameter key="encoding" value="GB2312"/> <process expanded="true" height="391" width="915"> <operator activated="true" class="retrieve" expanded="true" height="60" name="Retrieve" width="90" x="45" y="30"> <parameter key="repository_entry" value="//Samples/data/Sonar"/> </operator> <operator activated="true" class="normalize" expanded="true" height="94" name="Normalize" width="90" x="179" y="30"/> <operator activated="true" class="multiply" expanded="true" height="94" name="Multiply" width="90" x="313" y="30"/> <operator activated="true" class="optimize_parameters_grid" expanded="true" height="112" name="Optimise C and Gamma on treaining set" width="90" x="514" y="30"> <list key="parameters"> <parameter key="SVM.C" value="0.00001,0.0001,0.001,0.01,0.1,1,10,100,1000,10000,100000"/> <parameter key="SVM.gamma" value="0.00001,0.0001,0.001,0.01,0.1,1,10,100,1000,10000,100000"/> </list> <process expanded="true" height="510" width="991"> <operator activated="true" class="x_validation" expanded="true" height="112" name="Validation" width="90" x="313" y="30"> <process expanded="true" height="510" width="470"> <operator activated="true" class="support_vector_machine_libsvm" expanded="true" height="76" name="SVM" width="90" x="130" y="30"> <parameter key="gamma" value="100000"/> <parameter key="C" value="100000"/> <list key="class_weights"/> <parameter key="shrinking" value="false"/> </operator> <connect from_port="training" to_op="SVM" to_port="training set"/> <connect from_op="SVM" from_port="model" to_port="model"/> <portSpacing port="source_training" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true" height="510" width="470"> <operator activated="true" class="apply_model" expanded="true" height="76" name="Apply Model" width="90" x="45" y="30"> <list key="application_parameters"/> <parameter key="create_view" value="true"/> </operator> <operator activated="true" class="performance" expanded="true" height="76" name="Performance" width="90" x="179" y="30"> <parameter key="use_example_weights" value="false"/> </operator> <connect from_port="model" to_op="Apply Model" to_port="model"/> <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/> <connect from_op="Performance" from_port="performance" to_port="averagable 1"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_averagable 1" spacing="0"/> <portSpacing port="sink_averagable 2" spacing="0"/> </process> </operator> <connect from_port="input 1" to_op="Validation" to_port="training"/> <connect from_op="Validation" from_port="model" to_port="result 1"/> <connect from_op="Validation" from_port="averagable 1" to_port="performance"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="source_input 2" spacing="0"/> <portSpacing port="sink_performance" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> </process> </operator> <operator activated="true" class="set_parameters" expanded="true" height="60" name="Set SVM2 parameters" width="90" x="648" y="75"> <list key="name_map"> <parameter key="SVM" value="SVM2"/> </list> </operator> <operator activated="true" class="support_vector_machine_libsvm" expanded="true" height="76" name="SVM2" width="90" x="514" y="165"> <parameter key="gamma" value="0.01"/> <parameter key="C" value="1000"/> <list key="class_weights"/> </operator> <operator activated="true" class="apply_model" expanded="true" height="76" name="Apply SVM2 on test set" width="90" x="648" y="165"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" expanded="true" height="76" name="Test Results" width="90" x="782" y="165"> <list key="class_weights"/> </operator> <connect from_op="Retrieve" from_port="output" to_op="Normalize" to_port="example set input"/> <connect from_op="Normalize" from_port="example set output" to_op="Multiply" to_port="input"/> <connect from_op="Multiply" from_port="output 1" to_op="Optimise C and Gamma on treaining set" to_port="input 1"/> <connect from_op="Multiply" from_port="output 2" to_op="SVM2" to_port="training set"/> <connect from_op="Optimise C and Gamma on treaining set" from_port="performance" to_port="result 1"/> <connect from_op="Optimise C and Gamma on treaining set" from_port="parameter" to_op="Set SVM2 parameters" to_port="parameter set"/> <connect from_op="SVM2" from_port="model" to_op="Apply SVM2 on test set" to_port="model"/> <connect from_op="SVM2" from_port="exampleSet" to_op="Apply SVM2 on test set" to_port="unlabelled data"/> <connect from_op="Apply SVM2 on test set" from_port="labelled data" to_op="Test Results" to_port="labelled data"/> <connect from_op="Test Results" from_port="performance" to_port="result 2"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> </process> </operator></process>
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.0"> <context> <input> <location/> </input> <output> <location/> <location/> <location/> </output> <macros/> </context> <operator activated="true" class="process" expanded="true" name="Process"> <parameter key="logverbosity" value="error"/> <parameter key="encoding" value="GB2312"/> <process expanded="true" height="386" width="909"> <operator activated="true" class="retrieve" expanded="true" height="60" name="Retrieve" width="90" x="45" y="30"> <parameter key="repository_entry" value="//Samples/data/Sonar"/> </operator> <operator activated="true" class="normalize" expanded="true" height="94" name="Normalize" width="90" x="179" y="30"/> <operator activated="true" class="multiply" expanded="true" height="94" name="Multiply" width="90" x="313" y="30"/> <operator activated="true" class="optimize_parameters_grid" expanded="true" height="94" name="Optimise C and Gamma on treaining set" width="90" x="514" y="30"> <list key="parameters"> <parameter key="SVM.C" value="0.00001,0.0001,0.001,0.01,0.1,1,10,100,1000,10000,100000"/> <parameter key="SVM.gamma" value="0.00001,0.0001,0.001,0.01,0.1,1,10,100,1000,10000,100000"/> </list> <process expanded="true" height="385" width="909"> <operator activated="true" class="support_vector_machine_libsvm" expanded="true" height="76" name="SVM" width="90" x="179" y="30"> <parameter key="gamma" value="100000"/> <parameter key="C" value="100000"/> <list key="class_weights"/> </operator> <operator activated="true" class="apply_model" expanded="true" height="76" name="Apply Model" width="90" x="450" y="30"> <list key="application_parameters"/> <parameter key="create_view" value="true"/> </operator> <operator activated="true" class="performance" expanded="true" height="76" name="Performance" width="90" x="585" y="30"> <parameter key="use_example_weights" value="false"/> </operator> <connect from_port="input 1" to_op="SVM" to_port="training set"/> <connect from_op="SVM" from_port="model" to_op="Apply Model" to_port="model"/> <connect from_op="SVM" from_port="exampleSet" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/> <connect from_op="Performance" from_port="performance" to_port="performance"/> <portSpacing port="source_input 1" spacing="18"/> <portSpacing port="source_input 2" spacing="0"/> <portSpacing port="sink_performance" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> </process> </operator> <operator activated="true" class="set_parameters" expanded="true" height="60" name="Set SVM2 parameters" width="90" x="648" y="75"> <list key="name_map"> <parameter key="SVM" value="SVM2"/> </list> </operator> <operator activated="true" class="support_vector_machine_libsvm" expanded="true" height="76" name="SVM2" width="90" x="514" y="165"> <parameter key="gamma" value="0.0001"/> <parameter key="C" value="100000"/> <list key="class_weights"/> </operator> <operator activated="true" class="apply_model" expanded="true" height="76" name="Apply SVM2 on test set" width="90" x="648" y="165"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" expanded="true" height="76" name="Optimised Parameters" width="90" x="782" y="165"> <list key="class_weights"/> </operator> <connect from_op="Retrieve" from_port="output" to_op="Normalize" to_port="example set input"/> <connect from_op="Normalize" from_port="example set output" to_op="Multiply" to_port="input"/> <connect from_op="Multiply" from_port="output 1" to_op="Optimise C and Gamma on treaining set" to_port="input 1"/> <connect from_op="Multiply" from_port="output 2" to_op="SVM2" to_port="training set"/> <connect from_op="Optimise C and Gamma on treaining set" from_port="performance" to_port="result 1"/> <connect from_op="Optimise C and Gamma on treaining set" from_port="parameter" to_op="Set SVM2 parameters" to_port="parameter set"/> <connect from_op="SVM2" from_port="model" to_op="Apply SVM2 on test set" to_port="model"/> <connect from_op="SVM2" from_port="exampleSet" to_op="Apply SVM2 on test set" to_port="unlabelled data"/> <connect from_op="Apply SVM2 on test set" from_port="labelled data" to_op="Optimised Parameters" to_port="labelled data"/> <connect from_op="Optimised Parameters" from_port="performance" to_port="result 2"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> </process> </operator></process>
Is this wrong?
The learning process will stop when an extremum is reached on the error of classification of the data on the chosen test subset.
In that case my understanding of the process is that the learner will be trained and tested on different subsets.
The learning process will stop when an extremum is reached on the error of classification of the data on the chosen test subset. By doing so we might not be able to classified with 100% accuracy but we keep the generalization ability.
So when SVM1 is trained with X-validation and if the result is let say 80%, it seems impossible to me that SVM2 (which is finally a copy of SVM1) can classified the whole dataset with 100% accuracy.
The reason for that is that the subset on which SVM1 made the test with result 80% is mandatorily included in the whole dataset, and if SVM1 cannot achieve better than 80% on this specific subset, why would SVM2 be better on this specific subset.
So there must be some misclassifications and then 100% accuracy is not possible.Is this wrong?
Also are we sure that the accuracy we can read for SVM1 is coming from the optimised parameters?
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.0"> <context> <input> <location/> </input> <output> <location/> <location/> <location/> </output> <macros/> </context> <operator activated="true" class="process" expanded="true" name="Process"> <parameter key="logverbosity" value="error"/> <parameter key="encoding" value="GB2312"/> <process expanded="true" height="385" width="909"> <operator activated="true" class="retrieve" expanded="true" height="60" name="Retrieve" width="90" x="45" y="30"> <parameter key="repository_entry" value="//Samples/data/Sonar"/> </operator> <operator activated="true" class="normalize" expanded="true" height="94" name="Normalize" width="90" x="179" y="30"/> <operator activated="true" class="multiply" expanded="true" height="94" name="Multiply" width="90" x="313" y="30"/> <operator activated="true" class="optimize_parameters_grid" expanded="true" height="112" name="Optimise C and Gamma on treaining set" width="90" x="514" y="30"> <list key="parameters"> <parameter key="SVM.C" value="0.00001,0.0001,0.001,0.01,0.1,1,10,100,1000,10000,100000"/> <parameter key="SVM.gamma" value="0.00001,0.0001,0.001,0.01,0.1,1,10,100,1000,10000,100000"/> </list> <process expanded="true" height="385" width="909"> <operator activated="true" class="x_validation" expanded="true" height="112" name="Validation" width="90" x="313" y="30"> <process expanded="true"> <operator activated="true" class="support_vector_machine_libsvm" expanded="true" height="76" name="SVM" width="90" x="130" y="30"> <parameter key="gamma" value="100000"/> <parameter key="C" value="100000"/> <list key="class_weights"/> <parameter key="shrinking" value="false"/> </operator> <connect from_port="training" to_op="SVM" to_port="training set"/> <connect from_op="SVM" from_port="model" to_port="model"/> <portSpacing port="source_training" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true"> <operator activated="true" class="apply_model" expanded="true" height="76" name="Apply Model" width="90" x="45" y="30"> <list key="application_parameters"/> <parameter key="create_view" value="true"/> </operator> <operator activated="true" class="performance" expanded="true" height="76" name="Performance" width="90" x="179" y="30"> <parameter key="use_example_weights" value="false"/> </operator> <connect from_port="model" to_op="Apply Model" to_port="model"/> <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/> <connect from_op="Performance" from_port="performance" to_port="averagable 1"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_averagable 1" spacing="0"/> <portSpacing port="sink_averagable 2" spacing="0"/> </process> </operator> <operator activated="true" class="log" expanded="true" height="76" name="Optimiser log" width="90" x="548" y="65"> <list key="log"> <parameter key="Validation" value="operator.Validation.value.performance"/> <parameter key="C" value="operator.SVM.parameter.C"/> <parameter key="G" value="operator.SVM.parameter.gamma"/> </list> </operator> <connect from_port="input 1" to_op="Validation" to_port="training"/> <connect from_op="Validation" from_port="model" to_port="result 1"/> <connect from_op="Validation" from_port="averagable 1" to_op="Optimiser log" to_port="through 1"/> <connect from_op="Optimiser log" from_port="through 1" to_port="performance"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="source_input 2" spacing="0"/> <portSpacing port="sink_performance" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> </process> </operator> <operator activated="true" class="set_parameters" expanded="true" height="60" name="Set SVM2 parameters" width="90" x="648" y="75"> <list key="name_map"> <parameter key="SVM" value="SVM2"/> </list> </operator> <operator activated="true" class="support_vector_machine_libsvm" expanded="true" height="76" name="SVM2" width="90" x="514" y="165"> <parameter key="gamma" value="0.01"/> <parameter key="C" value="10.0"/> <list key="class_weights"/> </operator> <operator activated="true" class="apply_model" expanded="true" height="76" name="Apply SVM2 on test set" width="90" x="648" y="165"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" expanded="true" height="76" name="Test Results" width="90" x="782" y="165"> <list key="class_weights"/> </operator> <connect from_op="Retrieve" from_port="output" to_op="Normalize" to_port="example set input"/> <connect from_op="Normalize" from_port="example set output" to_op="Multiply" to_port="input"/> <connect from_op="Multiply" from_port="output 1" to_op="Optimise C and Gamma on treaining set" to_port="input 1"/> <connect from_op="Multiply" from_port="output 2" to_op="SVM2" to_port="training set"/> <connect from_op="Optimise C and Gamma on treaining set" from_port="performance" to_port="result 1"/> <connect from_op="Optimise C and Gamma on treaining set" from_port="parameter" to_op="Set SVM2 parameters" to_port="parameter set"/> <connect from_op="SVM2" from_port="model" to_op="Apply SVM2 on test set" to_port="model"/> <connect from_op="SVM2" from_port="exampleSet" to_op="Apply SVM2 on test set" to_port="unlabelled data"/> <connect from_op="Apply SVM2 on test set" from_port="labelled data" to_op="Test Results" to_port="labelled data"/> <connect from_op="Test Results" from_port="performance" to_port="result 2"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> </process> </operator></process>
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.0"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" expanded="true" name="Process"> <parameter key="logverbosity" value="error"/> <parameter key="encoding" value="GB2312"/> <process expanded="true" height="431" width="909"> <operator activated="true" class="retrieve" expanded="true" height="60" name="Retrieve" width="90" x="45" y="30"> <parameter key="repository_entry" value="//Samples/data/Sonar"/> </operator> <operator activated="true" class="normalize" expanded="true" height="94" name="Normalize" width="90" x="179" y="30"/> <operator activated="true" class="multiply" expanded="true" height="94" name="Multiply" width="90" x="313" y="30"/> <operator activated="true" class="optimize_parameters_grid" expanded="true" height="112" name="Optimise C and Gamma on treaining set" width="90" x="514" y="30"> <list key="parameters"> <parameter key="SVM.C" value="0.00001,0.0001,0.001,0.01,0.1,1,10,100,1000,10000,100000"/> <parameter key="SVM.gamma" value="0.00001,0.0001,0.001,0.01,0.1,1,10,100,1000,10000,100000"/> </list> <process expanded="true" height="385" width="909"> <operator activated="true" class="x_validation" expanded="true" height="112" name="Validation" width="90" x="313" y="30"> <process expanded="true"> <operator activated="true" class="support_vector_machine_libsvm" expanded="true" height="76" name="SVM" width="90" x="130" y="30"> <parameter key="gamma" value="100000"/> <parameter key="C" value="100000"/> <list key="class_weights"/> <parameter key="shrinking" value="false"/> </operator> <connect from_port="training" to_op="SVM" to_port="training set"/> <connect from_op="SVM" from_port="model" to_port="model"/> <portSpacing port="source_training" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true"> <operator activated="true" class="apply_model" expanded="true" height="76" name="Apply Model" width="90" x="45" y="30"> <list key="application_parameters"/> <parameter key="create_view" value="true"/> </operator> <operator activated="true" class="performance" expanded="true" height="76" name="Performance" width="90" x="179" y="30"> <parameter key="use_example_weights" value="false"/> </operator> <connect from_port="model" to_op="Apply Model" to_port="model"/> <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/> <connect from_op="Performance" from_port="performance" to_port="averagable 1"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_averagable 1" spacing="0"/> <portSpacing port="sink_averagable 2" spacing="0"/> </process> </operator> <operator activated="true" class="log" expanded="true" height="76" name="Optimiser log" width="90" x="548" y="65"> <parameter key="filename" value="C:\Repository\toto.log"/> <list key="log"> <parameter key="Validation" value="operator.Validation.value.performance"/> <parameter key="C" value="operator.SVM.parameter.C"/> <parameter key="G" value="operator.SVM.parameter.gamma"/> </list> </operator> <connect from_port="input 1" to_op="Validation" to_port="training"/> <connect from_op="Validation" from_port="model" to_port="result 1"/> <connect from_op="Validation" from_port="averagable 1" to_op="Optimiser log" to_port="through 1"/> <connect from_op="Optimiser log" from_port="through 1" to_port="performance"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="source_input 2" spacing="0"/> <portSpacing port="sink_performance" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> </process> </operator> <operator activated="true" class="write_parameters" expanded="true" height="60" name="Write Parameters" width="90" x="648" y="75"> <parameter key="parameter_file" value="C:\Repository\SVM1Parameters.par"/> </operator> <operator activated="true" class="set_parameters" expanded="true" height="60" name="Set SVM2 parameters" width="90" x="782" y="75"> <list key="name_map"> <parameter key="SVM" value="SVM2"/> </list> </operator> <operator activated="true" class="support_vector_machine_libsvm" expanded="true" height="76" name="SVM2" width="90" x="514" y="210"> <parameter key="gamma" value="0.01"/> <parameter key="C" value="1000"/> <list key="class_weights"/> </operator> <operator activated="true" class="apply_model" expanded="true" height="76" name="Apply SVM2 on test set" width="90" x="648" y="210"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" expanded="true" height="76" name="Test Results" width="90" x="782" y="165"> <list key="class_weights"/> </operator> <connect from_op="Retrieve" from_port="output" to_op="Normalize" to_port="example set input"/> <connect from_op="Normalize" from_port="example set output" to_op="Multiply" to_port="input"/> <connect from_op="Multiply" from_port="output 1" to_op="Optimise C and Gamma on treaining set" to_port="input 1"/> <connect from_op="Multiply" from_port="output 2" to_op="SVM2" to_port="training set"/> <connect from_op="Optimise C and Gamma on treaining set" from_port="performance" to_port="result 1"/> <connect from_op="Optimise C and Gamma on treaining set" from_port="parameter" to_op="Write Parameters" to_port="input"/> <connect from_op="Optimise C and Gamma on treaining set" from_port="result 1" to_port="result 2"/> <connect from_op="Write Parameters" from_port="through" to_op="Set SVM2 parameters" to_port="parameter set"/> <connect from_op="SVM2" from_port="model" to_op="Apply SVM2 on test set" to_port="model"/> <connect from_op="SVM2" from_port="exampleSet" to_op="Apply SVM2 on test set" to_port="unlabelled data"/> <connect from_op="Apply SVM2 on test set" from_port="labelled data" to_op="Test Results" to_port="labelled data"/> <connect from_op="Apply SVM2 on test set" from_port="model" to_port="result 4"/> <connect from_op="Test Results" from_port="performance" to_port="result 3"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="18"/> <portSpacing port="sink_result 3" spacing="72"/> <portSpacing port="sink_result 4" spacing="54"/> <portSpacing port="sink_result 5" spacing="108"/> </process> </operator></process>
I might be wrong but I don't think it is due to the fact that SVM2 has more data because if you look at the model as in the code below you see that SVM1 model and SVM2 model are rigorously the same.
I think my mistake come from a confusion between neural net training and SVM. Don't we use the error on the test set to stop training the neural net?In the case of SVM the test set is only used to make a performance measurement, no feed back to the learning process, is this correct?In the case of NN the X-validation has an impact on the model performance, for SVM it has no impact on the model performance but on the quality of the model performance measurement. Is that right?
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.0"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" expanded="true" name="Process"> <parameter key="logverbosity" value="error"/> <parameter key="encoding" value="GB2312"/> <process expanded="true" height="431" width="909"> <operator activated="true" class="retrieve" expanded="true" height="60" name="Retrieve" width="90" x="45" y="30"> <parameter key="repository_entry" value="//Samples/data/Sonar"/> </operator> <operator activated="true" class="normalize" expanded="true" height="94" name="Normalize" width="90" x="179" y="30"/> <operator activated="true" class="multiply" expanded="true" height="94" name="Multiply" width="90" x="313" y="30"/> <operator activated="true" class="optimize_parameters_grid" expanded="true" height="112" name="Optimise C and Gamma on treaining set" width="90" x="514" y="30"> <list key="parameters"> <parameter key="SVM.C" value="0.00001,0.0001,0.001,0.01,0.1,1,10,100,1000,10000,100000"/> <parameter key="SVM.gamma" value="0.00001,0.0001,0.001,0.01,0.1,1,10,100,1000,10000,100000"/> </list> <process expanded="true" height="385" width="909"> <operator activated="true" class="x_validation" expanded="true" height="112" name="Validation" width="90" x="313" y="30"> <process expanded="true" height="510" width="470"> <operator activated="true" class="support_vector_machine_libsvm" expanded="true" height="76" name="SVM" width="90" x="130" y="30"> <parameter key="gamma" value="100000"/> <parameter key="C" value="100000"/> <list key="class_weights"/> <parameter key="shrinking" value="false"/> </operator> <connect from_port="training" to_op="SVM" to_port="training set"/> <connect from_op="SVM" from_port="model" to_port="model"/> <portSpacing port="source_training" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true" height="510" width="470"> <operator activated="true" class="apply_model" expanded="true" height="76" name="Apply Model" width="90" x="45" y="30"> <list key="application_parameters"/> <parameter key="create_view" value="true"/> </operator> <operator activated="true" class="performance_classification" expanded="true" height="76" name="Performance" width="90" x="179" y="30"> <list key="class_weights"/> </operator> <connect from_port="model" to_op="Apply Model" to_port="model"/> <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/> <connect from_op="Performance" from_port="performance" to_port="averagable 1"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_averagable 1" spacing="0"/> <portSpacing port="sink_averagable 2" spacing="0"/> </process> </operator> <connect from_port="input 1" to_op="Validation" to_port="training"/> <connect from_op="Validation" from_port="model" to_port="result 1"/> <connect from_op="Validation" from_port="averagable 1" to_port="performance"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="source_input 2" spacing="0"/> <portSpacing port="sink_performance" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> </process> </operator> <operator activated="true" class="apply_model" expanded="true" height="76" name="Apply Model (2)" width="90" x="648" y="210"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" expanded="true" height="76" name="Test Results" width="90" x="782" y="210"> <list key="class_weights"/> </operator> <connect from_op="Retrieve" from_port="output" to_op="Normalize" to_port="example set input"/> <connect from_op="Normalize" from_port="example set output" to_op="Multiply" to_port="input"/> <connect from_op="Multiply" from_port="output 1" to_op="Optimise C and Gamma on treaining set" to_port="input 1"/> <connect from_op="Multiply" from_port="output 2" to_op="Apply Model (2)" to_port="unlabelled data"/> <connect from_op="Optimise C and Gamma on treaining set" from_port="performance" to_port="result 1"/> <connect from_op="Optimise C and Gamma on treaining set" from_port="result 1" to_op="Apply Model (2)" to_port="model"/> <connect from_op="Apply Model (2)" from_port="labelled data" to_op="Test Results" to_port="labelled data"/> <connect from_op="Test Results" from_port="performance" to_port="result 2"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="162"/> <portSpacing port="sink_result 3" spacing="144"/> </process> </operator></process>
If you are checking your results on the training data, it's natural that the results are better when you give a big value of gamma because you allow the training procedure to adapt almost perfectly to the data you give it. This will probably mean that, for unseen data samples you're model/classifier won't have good results since it's too adapted to the training samples.
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.0"> <context> <input> <location/> </input> <output> <location/> <location/> <location/> <location/> </output> <macros/> </context> <operator activated="true" class="process" expanded="true" name="Process"> <parameter key="logverbosity" value="error"/> <parameter key="encoding" value="GB2312"/> <process expanded="true" height="367" width="902"> <operator activated="true" class="retrieve" expanded="true" height="60" name="Retrieve" width="90" x="45" y="30"> <parameter key="repository_entry" value="//Samples/data/Sonar"/> </operator> <operator activated="true" class="normalize" expanded="true" height="94" name="Normalize" width="90" x="45" y="165"/> <operator activated="true" class="multiply" expanded="true" height="94" name="Multiply" width="90" x="246" y="30"/> <operator activated="true" class="optimize_parameters_grid" expanded="true" height="112" name="Optimise C and Gamma on treaining set" width="90" x="447" y="30"> <list key="parameters"> <parameter key="SVM.C" value="0.00001,0.0001,0.001,0.01,0.1,1,10,100,1000,10000,100000"/> <parameter key="SVM.gamma" value="0.00001,0.0001,0.001,0.01,0.1,1,10,100,1000,10000,100000"/> </list> <process expanded="true"> <operator activated="true" class="x_validation" expanded="true" height="112" name="Validation" width="90" x="313" y="30"> <process expanded="true"> <operator activated="true" class="support_vector_machine_libsvm" expanded="true" height="76" name="SVM" width="90" x="130" y="30"> <parameter key="gamma" value="100000"/> <parameter key="C" value="100000"/> <list key="class_weights"/> <parameter key="shrinking" value="false"/> </operator> <connect from_port="training" to_op="SVM" to_port="training set"/> <connect from_op="SVM" from_port="model" to_port="model"/> <portSpacing port="source_training" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true"> <operator activated="true" class="apply_model" expanded="true" height="76" name="Apply Model" width="90" x="45" y="30"> <list key="application_parameters"/> <parameter key="create_view" value="true"/> </operator> <operator activated="true" class="performance_classification" expanded="true" height="76" name="Performance" width="90" x="179" y="30"> <list key="class_weights"/> </operator> <connect from_port="model" to_op="Apply Model" to_port="model"/> <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/> <connect from_op="Performance" from_port="performance" to_port="averagable 1"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_averagable 1" spacing="0"/> <portSpacing port="sink_averagable 2" spacing="0"/> </process> </operator> <connect from_port="input 1" to_op="Validation" to_port="training"/> <connect from_op="Validation" from_port="model" to_port="result 1"/> <connect from_op="Validation" from_port="averagable 1" to_port="performance"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="source_input 2" spacing="0"/> <portSpacing port="sink_performance" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> </process> </operator> <operator activated="true" class="apply_model" expanded="true" height="76" name="Apply Model (2)" width="90" x="447" y="210"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" expanded="true" height="76" name="Test Results" width="90" x="648" y="210"> <list key="class_weights"/> </operator> <operator activated="true" class="log" expanded="true" height="76" name="Log" width="90" x="782" y="255"> <list key="log"> <parameter key="C" value="operator.SVM.parameter.C"/> <parameter key="G" value="operator.SVM.parameter.gamma"/> </list> </operator> <connect from_op="Retrieve" from_port="output" to_op="Normalize" to_port="example set input"/> <connect from_op="Normalize" from_port="example set output" to_op="Multiply" to_port="input"/> <connect from_op="Multiply" from_port="output 1" to_op="Optimise C and Gamma on treaining set" to_port="input 1"/> <connect from_op="Multiply" from_port="output 2" to_op="Apply Model (2)" to_port="unlabelled data"/> <connect from_op="Optimise C and Gamma on treaining set" from_port="performance" to_port="result 1"/> <connect from_op="Optimise C and Gamma on treaining set" from_port="parameter" to_port="result 3"/> <connect from_op="Optimise C and Gamma on treaining set" from_port="result 1" to_op="Apply Model (2)" to_port="model"/> <connect from_op="Apply Model (2)" from_port="labelled data" to_op="Test Results" to_port="labelled data"/> <connect from_op="Test Results" from_port="performance" to_op="Log" to_port="through 1"/> <connect from_op="Log" from_port="through 1" to_port="result 2"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> <portSpacing port="sink_result 4" spacing="0"/> </process> </operator></process>
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.0"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" expanded="true" name="Process"> <process expanded="true" height="510" width="997"> <operator activated="true" class="subprocess" expanded="true" height="94" name="Subprocess" width="90" x="45" y="30"> <process expanded="true" height="510" width="1015"> <operator activated="true" class="retrieve" expanded="true" height="60" name="Retrieve" width="90" x="45" y="30"> <parameter key="repository_entry" value="//Samples/data/Sonar"/> </operator> <operator activated="true" class="normalize" expanded="true" height="94" name="Normalize" width="90" x="179" y="30"/> <operator activated="true" class="multiply" expanded="true" height="94" name="Multiply" width="90" x="313" y="30"/> <connect from_op="Retrieve" from_port="output" to_op="Normalize" to_port="example set input"/> <connect from_op="Normalize" from_port="example set output" to_op="Multiply" to_port="input"/> <connect from_op="Multiply" from_port="output 1" to_port="out 1"/> <connect from_op="Multiply" from_port="output 2" to_port="out 2"/> <portSpacing port="source_in 1" spacing="0"/> <portSpacing port="sink_out 1" spacing="0"/> <portSpacing port="sink_out 2" spacing="0"/> <portSpacing port="sink_out 3" spacing="0"/> </process> </operator> <operator activated="true" class="split_data" expanded="true" height="94" name="Split Data" width="90" x="246" y="30"> <enumeration key="partitions"> <parameter key="ratio" value="0.7"/> <parameter key="ratio" value="0.3"/> </enumeration> </operator> <operator activated="true" class="support_vector_machine_libsvm" expanded="true" height="76" name="SVM" width="90" x="447" y="30"> <parameter key="gamma" value="0.01"/> <parameter key="C" value="1000.0"/> <list key="class_weights"/> </operator> <operator activated="true" class="write_model" expanded="true" height="60" name="Write Model" width="90" x="648" y="30"> <parameter key="model_file" value="C:\Repository\SVMwithSplit.mod"/> </operator> <operator activated="true" class="read_model" expanded="true" height="60" name="Read Model" width="90" x="246" y="165"> <parameter key="model_file" value="C:\Repository\SVMwithSplit.mod"/> </operator> <operator activated="true" class="apply_model" expanded="true" height="76" name="Apply Model" width="90" x="447" y="165"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" expanded="true" height="76" name="Performance" width="90" x="648" y="165"> <list key="class_weights"/> </operator> <operator activated="true" class="read_model" expanded="true" height="60" name="Read Model (2)" width="90" x="246" y="300"> <parameter key="model_file" value="C:\Repository\SVMwithSplit.mod"/> </operator> <operator activated="true" class="apply_model" expanded="true" height="76" name="Apply Model (2)" width="90" x="447" y="300"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" expanded="true" height="76" name="Performance (2)" width="90" x="648" y="300"> <list key="class_weights"/> </operator> <connect from_op="Subprocess" from_port="out 1" to_op="Split Data" to_port="example set"/> <connect from_op="Subprocess" from_port="out 2" to_op="Apply Model (2)" to_port="unlabelled data"/> <connect from_op="Split Data" from_port="partition 1" to_op="SVM" to_port="training set"/> <connect from_op="Split Data" from_port="partition 2" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="SVM" from_port="model" to_op="Write Model" to_port="input"/> <connect from_op="Read Model" from_port="output" to_op="Apply Model" to_port="model"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/> <connect from_op="Performance" from_port="performance" to_port="result 1"/> <connect from_op="Read Model (2)" from_port="output" to_op="Apply Model (2)" to_port="model"/> <connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/> <connect from_op="Performance (2)" from_port="performance" to_port="result 2"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="126"/> <portSpacing port="sink_result 2" spacing="126"/> <portSpacing port="sink_result 3" spacing="36"/> </process> </operator></process>
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.0"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" expanded="true" name="Process"> <process expanded="true" height="510" width="997"> <operator activated="true" class="subprocess" expanded="true" height="94" name="Subprocess" width="90" x="45" y="30"> <process expanded="true" height="510" width="1015"> <operator activated="true" class="retrieve" expanded="true" height="60" name="Retrieve" width="90" x="45" y="30"> <parameter key="repository_entry" value="//Samples/data/Sonar"/> </operator> <operator activated="true" class="normalize" expanded="true" height="94" name="Normalize" width="90" x="179" y="30"/> <operator activated="true" class="multiply" expanded="true" height="94" name="Multiply" width="90" x="313" y="30"/> <connect from_op="Retrieve" from_port="output" to_op="Normalize" to_port="example set input"/> <connect from_op="Normalize" from_port="example set output" to_op="Multiply" to_port="input"/> <connect from_op="Multiply" from_port="output 1" to_port="out 1"/> <connect from_op="Multiply" from_port="output 2" to_port="out 2"/> <portSpacing port="source_in 1" spacing="0"/> <portSpacing port="sink_out 1" spacing="0"/> <portSpacing port="sink_out 2" spacing="0"/> <portSpacing port="sink_out 3" spacing="0"/> </process> </operator> <operator activated="true" class="x_validation" expanded="true" height="112" name="Validation" width="90" x="447" y="30"> <process expanded="true" height="510" width="482"> <operator activated="true" class="support_vector_machine_libsvm" expanded="true" height="76" name="SVM" width="90" x="179" y="30"> <parameter key="gamma" value="0.01"/> <parameter key="C" value="1000.0"/> <list key="class_weights"/> </operator> <connect from_port="training" to_op="SVM" to_port="training set"/> <connect from_op="SVM" from_port="model" to_port="model"/> <portSpacing port="source_training" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true" height="510" width="482"> <operator activated="true" class="apply_model" expanded="true" height="76" name="Apply Model" width="90" x="60" y="30"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" expanded="true" height="76" name="Performance" width="90" x="313" y="30"> <list key="class_weights"/> </operator> <connect from_port="model" to_op="Apply Model" to_port="model"/> <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/> <connect from_op="Performance" from_port="performance" to_port="averagable 1"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_averagable 1" spacing="0"/> <portSpacing port="sink_averagable 2" spacing="0"/> </process> </operator> <operator activated="true" class="write_model" expanded="true" height="60" name="Write Model" width="90" x="648" y="30"> <parameter key="model_file" value="C:\Repository\SVMwithXValidation.mod"/> </operator> <operator activated="true" class="read_model" expanded="true" height="60" name="Read Model (2)" width="90" x="179" y="300"> <parameter key="model_file" value="C:\Repository\SVMwithXValidation.mod"/> </operator> <operator activated="true" class="apply_model" expanded="true" height="76" name="Apply Model (2)" width="90" x="447" y="300"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" expanded="true" height="76" name="Performance (2)" width="90" x="648" y="300"> <list key="class_weights"/> </operator> <connect from_op="Subprocess" from_port="out 1" to_op="Validation" to_port="training"/> <connect from_op="Subprocess" from_port="out 2" to_op="Apply Model (2)" to_port="unlabelled data"/> <connect from_op="Validation" from_port="model" to_op="Write Model" to_port="input"/> <connect from_op="Validation" from_port="averagable 1" to_port="result 1"/> <connect from_op="Read Model (2)" from_port="output" to_op="Apply Model (2)" to_port="model"/> <connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/> <connect from_op="Performance (2)" from_port="performance" to_port="result 2"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="36"/> <portSpacing port="sink_result 2" spacing="216"/> <portSpacing port="sink_result 3" spacing="0"/> </process> </operator></process>
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.0"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" expanded="true" name="Process"> <process expanded="true" height="510" width="997"> <operator activated="true" class="subprocess" expanded="true" height="94" name="Subprocess" width="90" x="112" y="30"> <process expanded="true" height="510" width="1015"> <operator activated="true" class="retrieve" expanded="true" height="60" name="Retrieve" width="90" x="45" y="30"> <parameter key="repository_entry" value="//Samples/data/Sonar"/> </operator> <operator activated="true" class="normalize" expanded="true" height="94" name="Normalize" width="90" x="179" y="30"/> <operator activated="true" class="multiply" expanded="true" height="94" name="Multiply" width="90" x="313" y="30"/> <connect from_op="Retrieve" from_port="output" to_op="Normalize" to_port="example set input"/> <connect from_op="Normalize" from_port="example set output" to_op="Multiply" to_port="input"/> <connect from_op="Multiply" from_port="output 1" to_port="out 1"/> <connect from_op="Multiply" from_port="output 2" to_port="out 2"/> <portSpacing port="source_in 1" spacing="0"/> <portSpacing port="sink_out 1" spacing="0"/> <portSpacing port="sink_out 2" spacing="0"/> <portSpacing port="sink_out 3" spacing="0"/> </process> </operator> <operator activated="true" class="x_validation" expanded="true" height="112" name="Validation" width="90" x="447" y="30"> <process expanded="true" height="510" width="482"> <operator activated="true" class="k_nn" expanded="true" height="76" name="k-NN" width="90" x="179" y="30"/> <connect from_port="training" to_op="k-NN" to_port="training set"/> <connect from_op="k-NN" from_port="model" to_port="model"/> <portSpacing port="source_training" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true" height="510" width="482"> <operator activated="true" class="apply_model" expanded="true" height="76" name="Apply Model" width="90" x="60" y="30"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" expanded="true" height="76" name="Performance" width="90" x="313" y="30"> <list key="class_weights"/> </operator> <connect from_port="model" to_op="Apply Model" to_port="model"/> <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/> <connect from_op="Performance" from_port="performance" to_port="averagable 1"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_averagable 1" spacing="0"/> <portSpacing port="sink_averagable 2" spacing="0"/> </process> </operator> <operator activated="true" class="write_model" expanded="true" height="60" name="Write Model" width="90" x="648" y="30"> <parameter key="model_file" value="C:\Dokumente und Einstellungen\Mierswa\Desktop\SVMwithXValidation.mod"/> </operator> <operator activated="true" class="read_model" expanded="true" height="60" name="Read Model (2)" width="90" x="179" y="300"> <parameter key="model_file" value="C:\Dokumente und Einstellungen\Mierswa\Desktop\SVMwithXValidation.mod"/> </operator> <operator activated="true" class="apply_model" expanded="true" height="76" name="Apply Model (2)" width="90" x="447" y="300"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" expanded="true" height="76" name="Performance (2)" width="90" x="648" y="300"> <list key="class_weights"/> </operator> <connect from_op="Subprocess" from_port="out 1" to_op="Validation" to_port="training"/> <connect from_op="Subprocess" from_port="out 2" to_op="Apply Model (2)" to_port="unlabelled data"/> <connect from_op="Validation" from_port="model" to_op="Write Model" to_port="input"/> <connect from_op="Validation" from_port="averagable 1" to_port="result 1"/> <connect from_op="Read Model (2)" from_port="output" to_op="Apply Model (2)" to_port="model"/> <connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/> <connect from_op="Performance (2)" from_port="performance" to_port="result 2"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="36"/> <portSpacing port="sink_result 2" spacing="216"/> <portSpacing port="sink_result 3" spacing="0"/> </process> </operator></process>
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.0"> <context> <input> <location/> </input> <output> <location/> <location/> <location/> <location/> <location/> </output> <macros/> </context> <operator activated="true" class="process" expanded="true" name="Process"> <parameter key="logverbosity" value="error"/> <parameter key="encoding" value="GB2312"/> <process expanded="true" height="618" width="884"> <operator activated="true" class="optimize_parameters_grid" expanded="true" height="112" name="Optimise C and Gamma on treaining set" width="90" x="447" y="30"> <list key="parameters"> <parameter key="SVM.C" value="0.00001,0.0001,0.001,0.01,0.1,1,10,100,1000,10000,100000"/> <parameter key="SVM.gamma" value="0.00001,0.0001,0.001,0.01,0.1,1,10,100,1000,10000,100000"/> </list> <process expanded="true" height="404" width="835"> <operator activated="true" class="retrieve" expanded="true" height="60" name="Retrieve" width="90" x="45" y="30"> <parameter key="repository_entry" value="//Samples/data/Sonar"/> </operator> <operator activated="true" class="normalize" expanded="true" height="94" name="Normalize" width="90" x="45" y="165"/> <operator activated="true" class="multiply" expanded="true" height="94" name="Multiply" width="90" x="179" y="165"/> <operator activated="true" class="support_vector_machine_libsvm" expanded="true" height="76" name="SVM" width="90" x="313" y="67"> <parameter key="gamma" value="100000"/> <parameter key="C" value="100000"/> <list key="class_weights"/> <parameter key="shrinking" value="false"/> </operator> <operator activated="true" class="apply_model" expanded="true" height="76" name="Apply Model (3)" width="90" x="447" y="255"> <list key="application_parameters"/> <parameter key="create_view" value="true"/> </operator> <operator activated="true" class="performance_classification" expanded="true" height="76" name="Performance (2)" width="90" x="581" y="210"> <list key="class_weights"/> </operator> <operator activated="true" class="log" expanded="true" height="94" name="Log" width="90" x="715" y="210"> <list key="log"> <parameter key="Perf" value="operator.Performance (2).value.accuracy"/> <parameter key="C" value="operator.SVM.parameter.C"/> <parameter key="G" value="operator.SVM.parameter.gamma"/> </list> </operator> <connect from_op="Retrieve" from_port="output" to_op="Normalize" to_port="example set input"/> <connect from_op="Normalize" from_port="example set output" to_op="Multiply" to_port="input"/> <connect from_op="Multiply" from_port="output 1" to_op="SVM" to_port="training set"/> <connect from_op="Multiply" from_port="output 2" to_op="Apply Model (3)" to_port="unlabelled data"/> <connect from_op="SVM" from_port="model" to_op="Apply Model (3)" to_port="model"/> <connect from_op="Apply Model (3)" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/> <connect from_op="Performance (2)" from_port="performance" to_op="Log" to_port="through 1"/> <connect from_op="Log" from_port="through 1" to_port="performance"/> <connect from_op="Log" from_port="through 2" to_port="result 1"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_performance" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> </process> </operator> <operator activated="true" class="log_to_data" expanded="true" height="76" name="Log to Data" width="90" x="179" y="255"/> <operator activated="true" class="discretize_by_bins" expanded="true" height="94" name="Discretize" width="90" x="313" y="255"> <parameter key="attribute_filter_type" value="single"/> <parameter key="attribute" value="Perf"/> <parameter key="number_of_bins" value="5"/> <parameter key="min_value" value="0.97"/> <parameter key="max_value" value="1.0"/> <parameter key="range_name_type" value="interval"/> </operator> <operator activated="true" class="set_role" expanded="true" height="76" name="Set Role" width="90" x="447" y="255"> <parameter key="name" value="Perf"/> <parameter key="target_role" value="label"/> </operator> <operator activated="true" class="decision_tree" expanded="true" height="76" name="Decision Tree" width="90" x="648" y="255"/> <connect from_op="Optimise C and Gamma on treaining set" from_port="performance" to_port="result 1"/> <connect from_op="Optimise C and Gamma on treaining set" from_port="parameter" to_port="result 2"/> <connect from_op="Log to Data" from_port="exampleSet" to_op="Discretize" to_port="example set input"/> <connect from_op="Discretize" from_port="example set output" to_op="Set Role" to_port="example set input"/> <connect from_op="Set Role" from_port="example set output" to_op="Decision Tree" to_port="training set"/> <connect from_op="Decision Tree" from_port="model" to_port="result 3"/> <connect from_op="Decision Tree" from_port="exampleSet" to_port="result 4"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> <portSpacing port="sink_result 4" spacing="0"/> <portSpacing port="sink_result 5" spacing="0"/> </process> </operator></process>