🎉Community Raffle - Win $25

An exclusive raffle opportunity for active members like you! Complete your profile, answer questions and get your first accepted badge to enter the raffle.
Join and Win

How do I create a Convolutional Newral Network?

User: "superinhuman"
New Altair Community Member
Updated by Jocelyn
I am new in Data Science and Rapidminer. Recently i was trying to implement CNN on my data set of Intrusion Detection System.
But I have failed to do it. Is there any operator for CNN like Neural Net?
Or there is any different way to implement it.

My XML code for the neural network model is below-

<?xml version="1.0" encoding="UTF-8"?><process version="9.5.001">
  <context>
    <input/>
    <output/>
    <macros/>
  </context>
  <operator activated="true" class="process" compatibility="9.5.001" expanded="true" name="Process">
    <parameter key="logverbosity" value="init"/>
    <parameter key="random_seed" value="2001"/>
    <parameter key="send_mail" value="never"/>
    <parameter key="notification_email" value=""/>
    <parameter key="process_duration_for_mail" value="30"/>
    <parameter key="encoding" value="SYSTEM"/>
    <process expanded="true">
      <operator activated="true" class="retrieve" compatibility="9.5.001" expanded="true" height="68" name="Retrieve WSN-DS" width="90" x="45" y="85">
        <parameter key="repository_entry" value="WSN-DS"/>
      </operator>
      <operator activated="true" class="set_role" compatibility="9.5.001" expanded="true" height="82" name="Set Role" width="90" x="179" y="85">
        <parameter key="attribute_name" value="Attack type"/>
        <parameter key="target_role" value="label"/>
        <list key="set_additional_roles"/>
      </operator>
      <operator activated="true" class="split_data" compatibility="9.5.001" expanded="true" height="103" name="Split Data" width="90" x="313" y="34">
        <enumeration key="partitions">
          <parameter key="ratio" value="0.8"/>
          <parameter key="ratio" value="0.2"/>
        </enumeration>
        <parameter key="sampling_type" value="automatic"/>
        <parameter key="use_local_random_seed" value="false"/>
        <parameter key="local_random_seed" value="1992"/>
      </operator>
      <operator activated="true" class="neural_net" compatibility="9.5.001" expanded="true" height="82" name="Neural Net" width="90" x="451" y="34">
        <list key="hidden_layers"/>
        <parameter key="training_cycles" value="200"/>
        <parameter key="learning_rate" value="0.01"/>
        <parameter key="momentum" value="0.9"/>
        <parameter key="decay" value="false"/>
        <parameter key="shuffle" value="true"/>
        <parameter key="normalize" value="true"/>
        <parameter key="error_epsilon" value="1.0E-4"/>
        <parameter key="use_local_random_seed" value="false"/>
        <parameter key="local_random_seed" value="1992"/>
      </operator>
      <operator activated="true" class="apply_model" compatibility="9.5.001" expanded="true" height="82" name="Apply Model" width="90" x="592" y="85">
        <list key="application_parameters"/>
        <parameter key="create_view" value="false"/>
      </operator>
      <operator activated="true" class="performance_classification" compatibility="9.5.001" expanded="true" height="82" name="Performance" width="90" x="726" y="85">
        <parameter key="main_criterion" value="accuracy"/>
        <parameter key="accuracy" value="true"/>
        <parameter key="classification_error" value="false"/>
        <parameter key="kappa" value="false"/>
        <parameter key="weighted_mean_recall" value="false"/>
        <parameter key="weighted_mean_precision" value="false"/>
        <parameter key="spearman_rho" value="false"/>
        <parameter key="kendall_tau" value="false"/>
        <parameter key="absolute_error" value="false"/>
        <parameter key="relative_error" value="false"/>
        <parameter key="relative_error_lenient" value="false"/>
        <parameter key="relative_error_strict" value="false"/>
        <parameter key="normalized_absolute_error" value="false"/>
        <parameter key="root_mean_squared_error" value="false"/>
        <parameter key="root_relative_squared_error" value="false"/>
        <parameter key="squared_error" value="false"/>
        <parameter key="correlation" value="false"/>
        <parameter key="squared_correlation" value="false"/>
        <parameter key="cross-entropy" value="false"/>
        <parameter key="margin" value="false"/>
        <parameter key="soft_margin_loss" value="false"/>
        <parameter key="logistic_loss" value="false"/>
        <parameter key="skip_undefined_labels" value="true"/>
        <parameter key="use_example_weights" value="true"/>
        <list key="class_weights"/>
      </operator>
      <connect from_op="Retrieve WSN-DS" from_port="output" to_op="Set Role" to_port="example set input"/>
      <connect from_op="Set Role" from_port="example set output" to_op="Split Data" to_port="example set"/>
      <connect from_op="Split Data" from_port="partition 1" to_op="Neural Net" to_port="training set"/>
      <connect from_op="Split Data" from_port="partition 2" to_op="Apply Model" to_port="unlabelled data"/>
      <connect from_op="Neural Net" from_port="model" to_op="Apply Model" to_port="model"/>
      <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
      <connect from_op="Apply Model" from_port="model" to_port="result 1"/>
      <connect from_op="Performance" from_port="performance" to_port="result 2"/>
      <portSpacing port="source_input 1" spacing="0"/>
      <portSpacing port="sink_result 1" spacing="0"/>
      <portSpacing port="sink_result 2" spacing="0"/>
      <portSpacing port="sink_result 3" spacing="0"/>
    </process>
  </operator>
</process>