Which operator in the 9.3 version is analogous to the write model in the 5.3 version?
Find more posts tagged with
Sort by:
1 - 4 of
41
I think the Read/Write model operators were already a bit old in 5.3, but they were kept in the legacy extension (which is bundled) and just recently were marked as deprecated (since RM 9.2).
You can still use these operators, although it is not recommended, by using the operator classes "legacy:read_model" and "legacy:write_model" in your xml (or load in an old process from 5.3).
Cheers
Jan
Earlier write model is used to store model in the form of .mod. I am not sure if its part of an extension as I don't see it in Rapidminer. You can use the store operator to store your model in rapidminer repository and then use retrieve operator to retrieve the stored model to apply on data.
Sample store model XML below.
<?xml version="1.0" encoding="UTF-8"?><process version="9.3.001">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="9.3.001" expanded="true" name="Process">
<parameter key="logverbosity" value="init"/>
<parameter key="random_seed" value="2001"/>
<parameter key="send_mail" value="never"/>
<parameter key="notification_email" value=""/>
<parameter key="process_duration_for_mail" value="30"/>
<parameter key="encoding" value="SYSTEM"/>
<process expanded="true">
<operator activated="true" class="retrieve" compatibility="9.3.001" expanded="true" height="68" name="Retrieve Titanic Training" width="90" x="45" y="85">
<parameter key="repository_entry" value="//Samples/data/Titanic Training"/>
</operator>
<operator activated="true" class="concurrency:parallel_decision_tree" compatibility="9.3.001" expanded="true" height="103" name="Decision Tree" width="90" x="246" y="85">
<parameter key="criterion" value="gain_ratio"/>
<parameter key="maximal_depth" value="10"/>
<parameter key="apply_pruning" value="true"/>
<parameter key="confidence" value="0.1"/>
<parameter key="apply_prepruning" value="true"/>
<parameter key="minimal_gain" value="0.01"/>
<parameter key="minimal_leaf_size" value="2"/>
<parameter key="minimal_size_for_split" value="4"/>
<parameter key="number_of_prepruning_alternatives" value="3"/>
</operator>
<operator activated="true" class="store" compatibility="9.3.001" expanded="true" height="68" name="Store" width="90" x="514" y="85">
<parameter key="repository_entry" value="//Local Repository/processes/test_process_store"/>
</operator>
<connect from_op="Retrieve Titanic Training" from_port="output" to_op="Decision Tree" to_port="training set"/>
<connect from_op="Decision Tree" from_port="model" to_op="Store" to_port="input"/>
<connect from_op="Store" from_port="through" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
</process>
</operator>
</process>
Hope this helps
Varun