🎉Community Raffle - Win $25

An exclusive raffle opportunity for active members like you! Complete your profile, answer questions and get your first accepted badge to enter the raffle.
Join and Win

Linear model coefficients into prediction confidence

User: "kypexin"
New Altair Community Member
Updated by Jocelyn

Hi miners,

 

The question might seem weird, but. I rare use linear models, but should use more! 

 

Is there any obvious way to build an equation from linear model coefficients that would derive binominal label prediction confidence?

 

I am applying GLM to the dataset which contains polynominal attributes which were derived from discretizing numericals by enthropy to get ranges. Also there is a binominal label. If for example I initially had one variable named 'total_changes', at the end I have this kind of attributes and their coefficients:

 

Screenshot 2018-07-11 17.54.49.png

 

So this should be interpreted that total_changes between 13 and 14 adds to the confidence, while over 14 negatively impacts it, while less than 13 has no effect on it. Same with other variables. 

 

So, question is, is it possible to make an equation from this coefficients, which, given the ranges of variables, would calculate the confidence between 0 and 1? Or maybe any other way to make a meaningful equation which can be applied to new unseen data?

 

Thanks.  

Find more posts tagged with