🎉Community Raffle - Win $25

An exclusive raffle opportunity for active members like you! Complete your profile, answer questions and get your first accepted badge to enter the raffle.
Join and Win

Parameter Optimization, gives different results?

User: "kayman"
New Altair Community Member
Updated by Jocelyn

 

Can someone point me in the right direction on what I am doing wrong here? I want to get the best learning and momentum parameter values but the results are slightly suprising.

I'm using an optimize grid analyzer, but if I take the best parameter output from the grid (87%) and apply these directly to exactly the same data the result is only 25%. This difference is rather big, and around the same using new runs on the data so it's consistent.

 

Below is the code I used, so i assume I somehow misconnected things but I can't get a hold on it ...

 

 

<?xml version="1.0" encoding="UTF-8"?><process version="7.3.000">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="7.3.000" expanded="true" name="Process">
<process expanded="true">
<operator activated="true" class="retrieve" compatibility="7.3.000" expanded="true" height="68" name="Retrieve wordvector" width="90" x="112" y="34">
<parameter key="repository_entry" value="../SampleData/wordvector"/>
</operator>
<operator activated="true" class="optimize_parameters_grid" compatibility="7.3.000" expanded="true" height="103" name="Optimize Parameters (Grid)" width="90" x="313" y="34">
<list key="parameters">
<parameter key="Neural Net.learning_rate" value="[0.1;0.9;5;linear]"/>
<parameter key="Neural Net.momentum" value="[0.1;0.9;5;linear]"/>
</list>
<process expanded="true">
<operator activated="true" class="concurrency:cross_validation" compatibility="7.3.000" expanded="true" height="145" name="Cross Validation" width="90" x="112" y="34">
<process expanded="true">
<operator activated="true" class="neural_net" compatibility="7.3.000" expanded="true" height="82" name="Neural Net" width="90" x="179" y="34">
<list key="hidden_layers"/>
<parameter key="training_cycles" value="100"/>
<parameter key="learning_rate" value="0.1"/>
<parameter key="momentum" value="0.1"/>
</operator>
<connect from_port="training set" to_op="Neural Net" to_port="training set"/>
<connect from_op="Neural Net" from_port="model" to_port="model"/>
<portSpacing port="source_training set" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true">
<operator activated="true" class="apply_model" compatibility="7.3.000" expanded="true" height="82" name="Apply Model" width="90" x="179" y="85">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance_classification" compatibility="7.3.000" expanded="true" height="82" name="Performance" width="90" x="313" y="85">
<list key="class_weights"/>
</operator>
<connect from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance" from_port="performance" to_port="performance 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_test set results" spacing="0"/>
<portSpacing port="sink_performance 1" spacing="0"/>
<portSpacing port="sink_performance 2" spacing="0"/>
</process>
</operator>
<operator activated="true" class="log" compatibility="7.3.000" expanded="true" height="82" name="Log" width="90" x="313" y="85">
<list key="log">
<parameter key="learning rate" value="operator.Neural Net.parameter.learning_rate"/>
<parameter key="momentum" value="operator.Neural Net.parameter.momentum"/>
<parameter key="performance" value="operator.Cross Validation.value.performance 1"/>
</list>
</operator>
<connect from_port="input 1" to_op="Cross Validation" to_port="example set"/>
<connect from_op="Cross Validation" from_port="performance 1" to_op="Log" to_port="through 1"/>
<connect from_op="Log" from_port="through 1" to_port="performance"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="source_input 2" spacing="0"/>
<portSpacing port="sink_performance" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
</process>
</operator>
<connect from_op="Retrieve wordvector" from_port="output" to_op="Optimize Parameters (Grid)" to_port="input 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
</process>
</operator>
</process>

Find more posts tagged with