🎉Community Raffle - Win $25

An exclusive raffle opportunity for active members like you! Complete your profile, answer questions and get your first accepted badge to enter the raffle.
Join and Win

Is this normal for rapidminer to take this long ?

User: "kashif_khan"
New Altair Community Member
Updated by Jocelyn
I am dealing with text classification in rapidminer. I have two seperate test/train set. My test set consist of two categories with 30 documents each whereas my training sets consist of two categories with 70 documents each.

I applied feature selection via information gain to select top 200 attributes but its two hours till now since i started my process and it is still selecting those 200 attributes.

Is it supposed to take this much long for such a small corpus ??
Is their any way to optimize the performance of Rapid Miner ?


<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.3.013">
  <context>
    <input/>
    <output/>
    <macros/>
  </context>
  <operator activated="true" class="process" compatibility="5.3.013" expanded="true" name="Process">
    <parameter key="logverbosity" value="init"/>
    <parameter key="random_seed" value="2001"/>
    <parameter key="send_mail" value="never"/>
    <parameter key="notification_email" value=""/>
    <parameter key="process_duration_for_mail" value="30"/>
    <parameter key="encoding" value="SYSTEM"/>
    <process expanded="true">
      <operator activated="true" class="text:process_document_from_file" compatibility="5.2.004" expanded="true" height="76" name="Process Documents from Files" width="90" x="45" y="30">
        <list key="text_directories">
          <parameter key="comp.windows.x" value="D:\Machine Learning\News_Reuters\small_dataset0\Training\comp.windows.x"/>
          <parameter key="misc.forsale" value="D:\Machine Learning\News_Reuters\small_dataset0\Training\misc.forsale"/>
        </list>
        <parameter key="file_pattern" value="*"/>
        <parameter key="extract_text_only" value="true"/>
        <parameter key="use_file_extension_as_type" value="true"/>
        <parameter key="content_type" value="txt"/>
        <parameter key="encoding" value="SYSTEM"/>
        <parameter key="create_word_vector" value="true"/>
        <parameter key="vector_creation" value="TF-IDF"/>
        <parameter key="add_meta_information" value="true"/>
        <parameter key="keep_text" value="false"/>
        <parameter key="prune_method" value="none"/>
        <parameter key="prunde_below_percent" value="3.0"/>
        <parameter key="prune_above_percent" value="30.0"/>
        <parameter key="prune_below_absolute" value="3"/>
        <parameter key="prune_above_absolute" value="200"/>
        <parameter key="prune_below_rank" value="0.05"/>
        <parameter key="prune_above_rank" value="0.05"/>
        <parameter key="datamanagement" value="double_sparse_array"/>
        <process expanded="true">
          <operator activated="true" class="text:tokenize" compatibility="5.2.004" expanded="true" height="60" name="Tokenize" width="90" x="45" y="30">
            <parameter key="mode" value="non letters"/>
            <parameter key="characters" value=".:"/>
            <parameter key="language" value="English"/>
            <parameter key="max_token_length" value="3"/>
          </operator>
          <operator activated="true" class="text:filter_stopwords_english" compatibility="5.2.004" expanded="true" height="60" name="Filter Stopwords (English)" width="90" x="179" y="30"/>
          <operator activated="true" class="text:stem_snowball" compatibility="5.2.004" expanded="true" height="60" name="Stem (Snowball)" width="90" x="313" y="30">
            <parameter key="language" value="English"/>
          </operator>
          <operator activated="true" class="text:generate_n_grams_terms" compatibility="5.2.004" expanded="true" height="60" name="Generate n-Grams (Terms)" width="90" x="447" y="30">
            <parameter key="max_length" value="2"/>
          </operator>
          <connect from_port="document" to_op="Tokenize" to_port="document"/>
          <connect from_op="Tokenize" from_port="document" to_op="Filter Stopwords (English)" to_port="document"/>
          <connect from_op="Filter Stopwords (English)" from_port="document" to_op="Stem (Snowball)" to_port="document"/>
          <connect from_op="Stem (Snowball)" from_port="document" to_op="Generate n-Grams (Terms)" to_port="document"/>
          <connect from_op="Generate n-Grams (Terms)" from_port="document" to_port="document 1"/>
          <portSpacing port="source_document" spacing="0"/>
          <portSpacing port="sink_document 1" spacing="0"/>
          <portSpacing port="sink_document 2" spacing="0"/>
        </process>
      </operator>
      <operator activated="true" class="text:process_document_from_file" compatibility="5.2.004" expanded="true" height="76" name="Process Documents from Files (2)" width="90" x="179" y="255">
        <list key="text_directories">
          <parameter key="comp.windows.x" value="D:\Machine Learning\News_Reuters\small_dataset0\Testing\comp.windows.x"/>
          <parameter key="misc.forsale" value="D:\Machine Learning\News_Reuters\small_dataset0\Testing\misc.forsale"/>
        </list>
        <parameter key="file_pattern" value="*"/>
        <parameter key="extract_text_only" value="true"/>
        <parameter key="use_file_extension_as_type" value="true"/>
        <parameter key="content_type" value="txt"/>
        <parameter key="encoding" value="SYSTEM"/>
        <parameter key="create_word_vector" value="true"/>
        <parameter key="vector_creation" value="TF-IDF"/>
        <parameter key="add_meta_information" value="true"/>
        <parameter key="keep_text" value="false"/>
        <parameter key="prune_method" value="none"/>
        <parameter key="prunde_below_percent" value="3.0"/>
        <parameter key="prune_above_percent" value="30.0"/>
        <parameter key="prune_below_absolute" value="3"/>
        <parameter key="prune_above_absolute" value="200"/>
        <parameter key="prune_below_rank" value="0.05"/>
        <parameter key="prune_above_rank" value="0.05"/>
        <parameter key="datamanagement" value="double_sparse_array"/>
        <process expanded="true">
          <operator activated="true" class="text:tokenize" compatibility="5.2.004" expanded="true" name="Tokenize (2)">
            <parameter key="mode" value="non letters"/>
            <parameter key="characters" value=".:"/>
            <parameter key="language" value="English"/>
            <parameter key="max_token_length" value="3"/>
          </operator>
          <operator activated="true" class="text:filter_stopwords_english" compatibility="5.2.004" expanded="true" name="Filter Stopwords (2)"/>
          <operator activated="true" class="text:stem_snowball" compatibility="5.2.004" expanded="true" name="Stem (2)">
            <parameter key="language" value="English"/>
          </operator>
          <operator activated="true" class="text:generate_n_grams_terms" compatibility="5.2.004" expanded="true" name="Generate n-Grams (2)">
            <parameter key="max_length" value="2"/>
          </operator>
          <connect from_port="document" to_op="Tokenize (2)" to_port="document"/>
          <connect from_op="Tokenize (2)" from_port="document" to_op="Filter Stopwords (2)" to_port="document"/>
          <connect from_op="Filter Stopwords (2)" from_port="document" to_op="Stem (2)" to_port="document"/>
          <connect from_op="Stem (2)" from_port="document" to_op="Generate n-Grams (2)" to_port="document"/>
          <connect from_op="Generate n-Grams (2)" from_port="document" to_port="document 1"/>
          <portSpacing port="source_document" spacing="0"/>
          <portSpacing port="sink_document 1" spacing="0"/>
          <portSpacing port="sink_document 2" spacing="0"/>
        </process>
      </operator>
      <operator activated="true" class="weight_by_information_gain" compatibility="5.3.013" expanded="true" height="76" name="Weight by Information Gain" width="90" x="246" y="30">
        <parameter key="normalize_weights" value="true"/>
        <parameter key="sort_weights" value="true"/>
        <parameter key="sort_direction" value="ascending"/>
      </operator>
      <operator activated="true" class="multiply" compatibility="5.3.013" expanded="true" height="94" name="Multiply" width="90" x="313" y="165"/>
      <operator activated="true" class="select_by_weights" compatibility="5.3.013" expanded="true" height="94" name="Select by Weights (2)" width="90" x="447" y="255">
        <parameter key="weight_relation" value="greater"/>
        <parameter key="weight" value="0.0"/>
        <parameter key="k" value="1000"/>
        <parameter key="p" value="0.5"/>
        <parameter key="deselect_unknown" value="true"/>
        <parameter key="use_absolute_weights" value="true"/>
      </operator>
      <operator activated="true" class="select_by_weights" compatibility="5.3.013" expanded="true" height="94" name="Select by Weights" width="90" x="447" y="30">
        <parameter key="weight_relation" value="greater"/>
        <parameter key="weight" value="0.0"/>
        <parameter key="k" value="1000"/>
        <parameter key="p" value="0.5"/>
        <parameter key="deselect_unknown" value="true"/>
        <parameter key="use_absolute_weights" value="true"/>
      </operator>
      <operator activated="true" class="k_nn" compatibility="5.3.013" expanded="true" height="76" name="k-NN" width="90" x="648" y="30">
        <parameter key="k" value="1"/>
        <parameter key="weighted_vote" value="false"/>
        <parameter key="measure_types" value="MixedMeasures"/>
        <parameter key="mixed_measure" value="MixedEuclideanDistance"/>
        <parameter key="nominal_measure" value="NominalDistance"/>
        <parameter key="numerical_measure" value="EuclideanDistance"/>
        <parameter key="divergence" value="GeneralizedIDivergence"/>
        <parameter key="kernel_type" value="radial"/>
        <parameter key="kernel_gamma" value="1.0"/>
        <parameter key="kernel_sigma1" value="1.0"/>
        <parameter key="kernel_sigma2" value="0.0"/>
        <parameter key="kernel_sigma3" value="2.0"/>
        <parameter key="kernel_degree" value="3.0"/>
        <parameter key="kernel_shift" value="1.0"/>
        <parameter key="kernel_a" value="1.0"/>
        <parameter key="kernel_b" value="0.0"/>
      </operator>
      <operator activated="true" class="apply_model" compatibility="5.3.013" expanded="true" height="76" name="Apply Model" width="90" x="581" y="255">
        <list key="application_parameters"/>
        <parameter key="create_view" value="false"/>
      </operator>
      <operator activated="true" class="performance_classification" compatibility="5.3.013" expanded="true" height="76" name="Performance" width="90" x="715" y="255">
        <parameter key="main_criterion" value="first"/>
        <parameter key="accuracy" value="true"/>
        <parameter key="classification_error" value="false"/>
        <parameter key="kappa" value="false"/>
        <parameter key="weighted_mean_recall" value="false"/>
        <parameter key="weighted_mean_precision" value="false"/>
        <parameter key="spearman_rho" value="false"/>
        <parameter key="kendall_tau" value="false"/>
        <parameter key="absolute_error" value="false"/>
        <parameter key="relative_error" value="false"/>
        <parameter key="relative_error_lenient" value="false"/>
        <parameter key="relative_error_strict" value="false"/>
        <parameter key="normalized_absolute_error" value="false"/>
        <parameter key="root_mean_squared_error" value="false"/>
        <parameter key="root_relative_squared_error" value="false"/>
        <parameter key="squared_error" value="false"/>
        <parameter key="correlation" value="false"/>
        <parameter key="squared_correlation" value="false"/>
        <parameter key="cross-entropy" value="false"/>
        <parameter key="margin" value="false"/>
        <parameter key="soft_margin_loss" value="false"/>
        <parameter key="logistic_loss" value="false"/>
        <parameter key="skip_undefined_labels" value="true"/>
        <parameter key="use_example_weights" value="true"/>
        <list key="class_weights"/>
      </operator>
      <connect from_port="input 1" to_op="Process Documents from Files" to_port="word list"/>
      <connect from_op="Process Documents from Files" from_port="example set" to_op="Weight by Information Gain" to_port="example set"/>
      <connect from_op="Process Documents from Files" from_port="word list" to_op="Process Documents from Files (2)" to_port="word list"/>
      <connect from_op="Process Documents from Files (2)" from_port="example set" to_op="Select by Weights (2)" to_port="example set input"/>
      <connect from_op="Weight by Information Gain" from_port="weights" to_op="Multiply" to_port="input"/>
      <connect from_op="Weight by Information Gain" from_port="example set" to_op="Select by Weights" to_port="example set input"/>
      <connect from_op="Multiply" from_port="output 1" to_op="Select by Weights" to_port="weights"/>
      <connect from_op="Multiply" from_port="output 2" to_op="Select by Weights (2)" to_port="weights"/>
      <connect from_op="Select by Weights (2)" from_port="example set output" to_op="Apply Model" to_port="unlabelled data"/>
      <connect from_op="Select by Weights" from_port="example set output" to_op="k-NN" to_port="training set"/>
      <connect from_op="k-NN" from_port="model" to_op="Apply Model" to_port="model"/>
      <connect from_op="k-NN" from_port="exampleSet" to_port="result 1"/>
      <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
      <connect from_op="Performance" from_port="performance" to_port="result 2"/>
      <portSpacing port="source_input 1" spacing="0"/>
      <portSpacing port="source_input 2" spacing="0"/>
      <portSpacing port="sink_result 1" spacing="0"/>
      <portSpacing port="sink_result 2" spacing="0"/>
      <portSpacing port="sink_result 3" spacing="0"/>
    </process>
  </operator>
</process>
3.
OS: Windows 7
Software Version: RapidMiner 5.3.013 (64 bit)
Java : 1.7

Find more posts tagged with

Sort by:
1 - 2 of 21
    User: "kashif_khan"
    New Altair Community Member
    OP
    More latest i used 500 samples to weight by information gain and it took 5h:30m (h = hours, m = minutes) and yet not concluded its calculation. I closed it and think that it may be a night mare to load 1000 or more samples for reducing dimensions via feature selection(IG)
    User: "fras"
    New Altair Community Member
    Hi,

    for my point of view using attribute weighting and k-NN solving text mining problems seems not to be the ideal constellation.
    Please try nstead some pruning methods inside the Process-Document-Operator and choose a learning scheme like NaiveBayes or SVM.