A program to recognize and reward our most engaged community members
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="7.0.001"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="6.0.002" expanded="true" name="Process"> <process expanded="true"> <operator activated="true" class="retrieve" compatibility="7.0.001" expanded="true" height="68" name="Golf" width="90" x="45" y="30"> <parameter key="repository_entry" value="//Samples/data/Golf"/> </operator> <operator activated="true" class="generate_id" compatibility="7.0.001" expanded="true" height="82" name="Generate ID" width="90" x="179" y="34"/> <operator activated="true" class="generate_weight_stratification" compatibility="7.0.001" expanded="true" height="82" name="Generate Weight (Stratification)" width="90" x="246" y="187"> <description align="center" color="yellow" colored="true" width="126">Cunning use of weights for a confusing confusion matrix.</description> </operator> <operator activated="true" class="x_validation" compatibility="7.0.001" expanded="true" height="124" name="Validation" width="90" x="313" y="34"> <parameter key="number_of_validations" value="3"/> <parameter key="sampling_type" value="linear sampling"/> <process expanded="true"> <operator activated="true" class="parallel_decision_tree" compatibility="7.0.001" expanded="true" height="82" name="Decision Tree" width="90" x="179" y="34"/> <connect from_port="training" to_op="Decision Tree" to_port="training set"/> <connect from_op="Decision Tree" from_port="model" to_port="model"/> <portSpacing port="source_training" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true"> <operator activated="true" class="apply_model" compatibility="7.0.001" expanded="true" height="82" name="Apply Model" width="90" x="45" y="30"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" compatibility="7.0.001" expanded="true" height="82" name="Performance (2)" width="90" x="180" y="30"> <list key="class_weights"/> </operator> <connect from_port="model" to_op="Apply Model" to_port="model"/> <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/> <connect from_op="Performance (2)" from_port="performance" to_port="averagable 1"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_averagable 1" spacing="0"/> <portSpacing port="sink_averagable 2" spacing="126"/> </process> </operator> <connect from_op="Golf" from_port="output" to_op="Generate ID" to_port="example set input"/> <connect from_op="Generate ID" from_port="example set output" to_op="Generate Weight (Stratification)" to_port="example set input"/> <connect from_op="Generate Weight (Stratification)" from_port="example set output" to_op="Validation" to_port="training"/> <connect from_op="Validation" from_port="model" to_port="result 1"/> <connect from_op="Validation" from_port="training" to_port="result 2"/> <connect from_op="Validation" from_port="averagable 1" to_port="result 3"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> <portSpacing port="sink_result 4" spacing="0"/> </process> </operator></process>