🎉Community Raffle - Win $25

An exclusive raffle opportunity for active members like you! Complete your profile, answer questions and get your first accepted badge to enter the raffle.
Join and Win

Logistic Loss doesn't work

User: "Kr4Bzzz"
New Altair Community Member
Updated by Jocelyn
Hi!

I want to evaluate the prediction probabilities of a classifier via logistic loss.
My workflow is <Classifier> --> Apply Model --> Performance (Classification).

I choose logistic loss as main criterion, but whatever I do, I always get the following output:
logistic_loss: ∞

What am I doing wrong?

Find more posts tagged with

Sort by:
1 - 2 of 21
    User: "Nils_Woehler"
    New Altair Community Member
    Hi,

    please post your process setup (like it is described here  http://rapid-i.com/rapidforum/index.php/topic,4654.0.html), so that we can see what you are doing right now and give you hints on how to improve it.

    Best,
    Nils
    User: "Kr4Bzzz"
    New Altair Community Member
    OP
    <?xml version="1.0" encoding="UTF-8" standalone="no"?>
    <process version="5.2.003">
      <context>
        <input/>
        <output/>
        <macros/>
      </context>
      <operator activated="true" class="process" compatibility="5.2.003" expanded="true" name="Process">
        <parameter key="parallelize_main_process" value="true"/>
        <process expanded="true" height="663" width="705">
          <operator activated="true" class="retrieve" compatibility="5.2.003" expanded="true" height="60" name="Retrieve" width="90" x="45" y="30">
            <parameter key="repository_entry" value="BioResponse_Train"/>
          </operator>
          <operator activated="true" class="set_role" compatibility="5.2.003" expanded="true" height="76" name="Set Role" width="90" x="180" y="30">
            <parameter key="name" value="Activity"/>
            <parameter key="target_role" value="label"/>
            <list key="set_additional_roles"/>
          </operator>
          <operator activated="true" class="support_vector_machine_libsvm" compatibility="5.2.003" expanded="true" height="76" name="SVM" width="90" x="315" y="30">
            <list key="class_weights"/>
            <parameter key="calculate_confidences" value="true"/>
          </operator>
          <operator activated="true" class="apply_model" compatibility="5.2.003" expanded="true" height="76" name="Apply Model" width="90" x="450" y="30">
            <list key="application_parameters"/>
          </operator>
          <operator activated="true" class="performance_classification" compatibility="5.2.003" expanded="true" height="76" name="Performance" width="90" x="585" y="30">
            <parameter key="main_criterion" value="logistic_loss"/>
            <parameter key="logistic_loss" value="true"/>
            <list key="class_weights"/>
          </operator>
          <connect from_op="Retrieve" from_port="output" to_op="Set Role" to_port="example set input"/>
          <connect from_op="Set Role" from_port="example set output" to_op="SVM" to_port="training set"/>
          <connect from_op="SVM" from_port="model" to_op="Apply Model" to_port="model"/>
          <connect from_op="SVM" from_port="exampleSet" to_op="Apply Model" to_port="unlabelled data"/>
          <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
          <connect from_op="Performance" from_port="performance" to_port="result 1"/>
          <portSpacing port="source_input 1" spacing="0"/>
          <portSpacing port="sink_result 1" spacing="0"/>
          <portSpacing port="sink_result 2" spacing="0"/>
        </process>
      </operator>
    </process>