🎉Community Raffle - Win $25

An exclusive raffle opportunity for active members like you! Complete your profile, answer questions and get your first accepted badge to enter the raffle.
Join and Win

Problem with the naives bayes learner

User: "isuarez"
New Altair Community Member
Updated by Jocelyn
Hello i am having some problems with the Naives Bayes learner, it looks like when you add a X-Validation and set the parameters to full estimation mode with a fix kernel setting, the learner start doing non-predictions for most of the rows. I think it could be a bug, can anybody help me please.

This is my model:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.0">
  <context>
    <input>
      <location/>
    </input>
    <output>
      <location/>
      <location/>
    </output>
    <macros/>
  </context>
  <operator activated="true" class="process" expanded="true" name="Root">
    <process expanded="true" height="444" width="435">
      <operator activated="true" class="retrieve" expanded="true" height="60" name="Retrieve (2)" width="90" x="45" y="30">
        <parameter key="repository_entry" value="adult"/>
      </operator>
      <operator activated="true" class="sample" expanded="true" height="76" name="Sample" width="90" x="179" y="30">
        <parameter key="sample_size" value="3500"/>
        <parameter key="use_local_random_seed" value="true"/>
      </operator>
      <operator activated="true" class="x_validation" expanded="true" height="112" name="Validation" width="90" x="315" y="30">
        <process expanded="true" height="444" width="200">
          <operator activated="true" class="naive_bayes_kernel" expanded="true" height="76" name="Naive Bayes (Kernel)" width="90" x="38" y="61">
            <parameter key="estimation_mode" value="full"/>
            <parameter key="bandwidth_selection" value="fix"/>
          </operator>
          <connect from_port="training" to_op="Naive Bayes (Kernel)" to_port="training set"/>
          <connect from_op="Naive Bayes (Kernel)" from_port="model" to_port="model"/>
          <portSpacing port="source_training" spacing="0"/>
          <portSpacing port="sink_model" spacing="0"/>
          <portSpacing port="sink_through 1" spacing="0"/>
        </process>
        <process expanded="true" height="444" width="200">
          <operator activated="true" class="apply_model" expanded="true" height="76" name="Apply Model" width="90" x="45" y="120">
            <list key="application_parameters"/>
          </operator>
          <operator activated="true" class="performance" expanded="true" height="76" name="Performance" width="90" x="92" y="251"/>
          <connect from_port="model" to_op="Apply Model" to_port="model"/>
          <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
          <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
          <connect from_op="Performance" from_port="performance" to_port="averagable 1"/>
          <portSpacing port="source_model" spacing="18"/>
          <portSpacing port="source_test set" spacing="18"/>
          <portSpacing port="source_through 1" spacing="0"/>
          <portSpacing port="sink_averagable 1" spacing="0"/>
          <portSpacing port="sink_averagable 2" spacing="0"/>
        </process>
      </operator>
      <connect from_op="Retrieve (2)" from_port="output" to_op="Sample" to_port="example set input"/>
      <connect from_op="Sample" from_port="example set output" to_op="Validation" to_port="training"/>
      <connect from_op="Validation" from_port="averagable 1" to_port="result 1"/>
      <portSpacing port="source_input 1" spacing="0"/>
      <portSpacing port="sink_result 1" spacing="0"/>
      <portSpacing port="sink_result 2" spacing="0"/>
    </process>
  </operator>
</process>



And the data is extracted from this website:  http://archive.ics.uci.edu/ml/datasets/Census+Income

Thanks. 

Find more posts tagged with

Sort by:
1 - 1 of 11
    User: "land"
    New Altair Community Member
    Hi,
    yes there's an problem inside. We will resolve it as soon as possible.

    Greetings,
      Sebastian