W-Logistic only predicts 0 or 1
Maybe I'm doing something wrong but the model learned with W-Logistic always returns 1 or 0 but no other values in between. I looked at the WEKA source code to check if this is correct but unfortunately the WEKA code is not as good as the RM code, so I'm not sure where the problem is.
Maybe the reason is that the label attribute of the learning example set is binominal and the predicted label attribute of the learned regression model must be numerical. The predicted label gets "cloned" from the label of the learning example set (getLabel() in PredictionModel). As far I understand the WEKA code the classifyInstance(Instance instance) method checks if the class of the instance is nominal or not.
Maybe the reason is that the label attribute of the learning example set is binominal and the predicted label attribute of the learned regression model must be numerical. The predicted label gets "cloned" from the label of the learning example set (getLabel() in PredictionModel). As far I understand the WEKA code the classifyInstance(Instance instance) method checks if the class of the instance is nominal or not.