I have used the Decision Tree Regression and other regression models (SVR, LR, ANN, GBT, RFR etc.) on my data, and the former is performing better than all.
I also took a new set of data for test, and the decision tree still performed better.
But I have read about Decision Trees having overfitting problems, can I keep my results as a good one or the problem could really be overfitting?
Thank you
<?xml version="1.0" encoding="UTF-8"?><process version="9.10.001">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="9.10.001" expanded="true" name="Process">
<parameter key="logverbosity" value="init"/>
<parameter key="random_seed" value="2001"/>
<parameter key="send_mail" value="never"/>
<parameter key="notification_email" value=""/>
<parameter key="process_duration_for_mail" value="30"/>
<parameter key="encoding" value="SYSTEM"/>
<process expanded="true">
<operator activated="false" class="shuffle" compatibility="9.10.001" expanded="true" height="82" name="Shuffle" width="90" x="45" y="136">
<parameter key="use_local_random_seed" value="false"/>
<parameter key="local_random_seed" value="1992"/>
</operator>
<operator activated="true" class="retrieve" compatibility="9.10.001" expanded="true" height="68" name="Retrieve None_Updated.xlsx" width="90" x="45" y="34">
<parameter key="repository_entry" value="../Data/None_Updated.xlsx"/>
</operator>
<operator activated="true" class="filter_examples" compatibility="9.10.001" expanded="true" height="103" name="Train-test-set" width="90" x="246" y="34">
<parameter key="parameter_expression" value=""/>
<parameter key="condition_class" value="custom_filters"/>
<parameter key="invert_filter" value="false"/>
<list key="filters_list">
<parameter key="filters_entry_key" value="train.lt.1"/>
<parameter key="filters_entry_key" value="Material.eq.1"/>
<parameter key="filters_entry_key" value="interval.eq.1"/>
</list>
<parameter key="filters_logic_and" value="true"/>
<parameter key="filters_check_metadata" value="true"/>
</operator>
<operator activated="true" class="filter_examples" compatibility="9.10.001" expanded="true" height="103" name="Validate-set" width="90" x="112" y="289">
<parameter key="parameter_expression" value=""/>
<parameter key="condition_class" value="custom_filters"/>
<parameter key="invert_filter" value="false"/>
<list key="filters_list">
<parameter key="filters_entry_key" value="train.eq.1"/>
<parameter key="filters_entry_key" value="Material.eq.1"/>
<parameter key="filters_entry_key" value="interval.eq.1"/>
</list>
<parameter key="filters_logic_and" value="true"/>
<parameter key="filters_check_metadata" value="true"/>
</operator>
<operator activated="true" class="set_role" compatibility="9.10.001" expanded="true" height="82" name="Set Role (2)" width="90" x="246" y="238">
<parameter key="attribute_name" value="LeakDist"/>
<parameter key="target_role" value="label"/>
<list key="set_additional_roles"/>
</operator>
<operator activated="true" class="set_role" compatibility="9.10.001" expanded="true" height="82" name="Set Role" width="90" x="447" y="34">
<parameter key="attribute_name" value="LeakDist"/>
<parameter key="target_role" value="label"/>
<list key="set_additional_roles"/>
</operator>
<operator activated="true" class="split_validation" compatibility="9.10.001" expanded="true" height="124" name="Validation" width="90" x="581" y="34">
<parameter key="create_complete_model" value="false"/>
<parameter key="split" value="relative"/>
<parameter key="split_ratio" value="0.8"/>
<parameter key="training_set_size" value="100"/>
<parameter key="test_set_size" value="-1"/>
<parameter key="sampling_type" value="automatic"/>
<parameter key="use_local_random_seed" value="true"/>
<parameter key="local_random_seed" value="1992"/>
<process expanded="true">
<operator activated="true" class="concurrency:parallel_decision_tree" compatibility="9.10.001" expanded="true" height="103" name="Decision Tree" width="90" x="112" y="34">
<parameter key="criterion" value="least_square"/>
<parameter key="maximal_depth" value="10"/>
<parameter key="apply_pruning" value="true"/>
<parameter key="confidence" value="0.1"/>
<parameter key="apply_prepruning" value="true"/>
<parameter key="minimal_gain" value="0.01"/>
<parameter key="minimal_leaf_size" value="2"/>
<parameter key="minimal_size_for_split" value="4"/>
<parameter key="number_of_prepruning_alternatives" value="3"/>
</operator>
<connect from_port="training" to_op="Decision Tree" to_port="training set"/>
<connect from_op="Decision Tree" from_port="model" to_port="model"/>
<portSpacing port="source_training" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true">
<operator activated="true" class="apply_model" compatibility="9.10.001" expanded="true" height="82" name="Apply Model" width="90" x="45" y="136">
<list key="application_parameters"/>
<parameter key="create_view" value="false"/>
</operator>
<operator activated="true" class="performance_regression" compatibility="9.10.001" expanded="true" height="82" name="Performance" width="90" x="179" y="34">
<parameter key="main_criterion" value="first"/>
<parameter key="root_mean_squared_error" value="true"/>
<parameter key="absolute_error" value="false"/>
<parameter key="relative_error" value="false"/>
<parameter key="relative_error_lenient" value="false"/>
<parameter key="relative_error_strict" value="false"/>
<parameter key="normalized_absolute_error" value="false"/>
<parameter key="root_relative_squared_error" value="false"/>
<parameter key="squared_error" value="false"/>
<parameter key="correlation" value="false"/>
<parameter key="squared_correlation" value="true"/>
<parameter key="prediction_average" value="false"/>
<parameter key="spearman_rho" value="false"/>
<parameter key="kendall_tau" value="false"/>
<parameter key="skip_undefined_labels" value="true"/>
<parameter key="use_example_weights" value="true"/>
</operator>
<connect from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance" from_port="performance" to_port="averagable 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_averagable 1" spacing="0"/>
<portSpacing port="sink_averagable 2" spacing="0"/>
</process>
</operator>
<operator activated="true" class="apply_model" compatibility="9.10.001" expanded="true" height="82" name="Apply Model (2)" width="90" x="380" y="340">
<list key="application_parameters"/>
<parameter key="create_view" value="false"/>
</operator>
<operator activated="true" class="blending:rename" compatibility="9.10.001" expanded="true" height="82" name="Rename" width="90" x="514" y="238">
<list key="rename attributes">
<parameter key="prediction(LeakDist)" value="predictedLeakDist"/>
</list>
<parameter key="from_attribute" value=""/>
<parameter key="to_attribute" value=""/>
</operator>
<operator activated="true" class="generate_attributes" compatibility="9.10.001" expanded="true" height="82" name="Generate Attributes" width="90" x="648" y="187">
<list key="function_descriptions">
<parameter key="Residuals" value="predictedLeakDist-LeakDist"/>
</list>
<parameter key="keep_all" value="true"/>
</operator>
<connect from_op="Retrieve None_Updated.xlsx" from_port="output" to_op="Train-test-set" to_port="example set input"/>
<connect from_op="Train-test-set" from_port="example set output" to_op="Set Role" to_port="example set input"/>
<connect from_op="Train-test-set" from_port="original" to_op="Validate-set" to_port="example set input"/>
<connect from_op="Validate-set" from_port="example set output" to_op="Set Role (2)" to_port="example set input"/>
<connect from_op="Set Role (2)" from_port="example set output" to_op="Apply Model (2)" to_port="unlabelled data"/>
<connect from_op="Set Role" from_port="example set output" to_op="Validation" to_port="training"/>
<connect from_op="Validation" from_port="model" to_op="Apply Model (2)" to_port="model"/>
<connect from_op="Validation" from_port="training" to_port="result 1"/>
<connect from_op="Validation" from_port="averagable 1" to_port="result 2"/>
<connect from_op="Apply Model (2)" from_port="labelled data" to_op="Rename" to_port="example set input"/>
<connect from_op="Apply Model (2)" from_port="model" to_port="result 4"/>
<connect from_op="Rename" from_port="example set output" to_op="Generate Attributes" to_port="example set input"/>
<connect from_op="Generate Attributes" from_port="example set output" to_port="result 3"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
<portSpacing port="sink_result 4" spacing="231"/>
<portSpacing port="sink_result 5" spacing="42"/>
</process>
</operator>
</process>