[HELP NEEED] Perfomance Classfication Error

tenz
tenz New Altair Community Member
edited November 2024 in Community Q&A
I want to see my performance model, my prediction is multi-classification type (0,1,2) but there is an error when it applies performance(Classification) operators "Performance(classification) cannot handle label." 
Then I try to use the recommendation help solver. There is another error "label and prediction must be the same type but are nominal and integer, respectively. " then I try to change the performance(regression), and it works, but that is not what I want. Please help me to solve this thing, thank you.

Result:  

Data type:



The first error using performance(classification):


The second error using performance(classification) with help me solve the problem:

Xml Code
<?xml version="1.0" encoding="UTF-8"?><process version="9.8.001">
  <context>
    <input/>
    <output/>
    <macros/>
  </context>
  <operator activated="true" class="process" compatibility="9.8.001" expanded="true" name="Process">
    <parameter key="logverbosity" value="init"/>
    <parameter key="random_seed" value="2001"/>
    <parameter key="send_mail" value="never"/>
    <parameter key="notification_email" value=""/>
    <parameter key="process_duration_for_mail" value="30"/>
    <parameter key="encoding" value="SYSTEM"/>
    <process expanded="true">
      <operator activated="true" class="retrieve" compatibility="9.8.001" expanded="true" height="68" name="Retrieve train" width="90" x="45" y="34">
        <parameter key="repository_entry" value="//Local Repository/train"/>
      </operator>
      <operator activated="true" class="set_role" compatibility="9.8.001" expanded="true" height="82" name="Set Role" width="90" x="313" y="34">
        <parameter key="attribute_name" value="price_range"/>
        <parameter key="target_role" value="label"/>
        <list key="set_additional_roles"/>
      </operator>
      <operator activated="true" class="split_data" compatibility="9.8.001" expanded="true" height="103" name="Split Data" width="90" x="447" y="238">
        <enumeration key="partitions">
          <parameter key="ratio" value="0.7"/>
          <parameter key="ratio" value="0.3"/>
        </enumeration>
        <parameter key="sampling_type" value="automatic"/>
        <parameter key="use_local_random_seed" value="false"/>
        <parameter key="local_random_seed" value="1992"/>
      </operator>
      <operator activated="true" class="k_nn" compatibility="9.8.001" expanded="true" height="82" name="k-NN" width="90" x="581" y="34">
        <parameter key="k" value="5"/>
        <parameter key="weighted_vote" value="true"/>
        <parameter key="measure_types" value="MixedMeasures"/>
        <parameter key="mixed_measure" value="MixedEuclideanDistance"/>
        <parameter key="nominal_measure" value="NominalDistance"/>
        <parameter key="numerical_measure" value="EuclideanDistance"/>
        <parameter key="divergence" value="GeneralizedIDivergence"/>
        <parameter key="kernel_type" value="radial"/>
        <parameter key="kernel_gamma" value="1.0"/>
        <parameter key="kernel_sigma1" value="1.0"/>
        <parameter key="kernel_sigma2" value="0.0"/>
        <parameter key="kernel_sigma3" value="2.0"/>
        <parameter key="kernel_degree" value="3.0"/>
        <parameter key="kernel_shift" value="1.0"/>
        <parameter key="kernel_a" value="1.0"/>
        <parameter key="kernel_b" value="0.0"/>
      </operator>
      <operator activated="true" class="apply_model" compatibility="9.8.001" expanded="true" height="82" name="Apply Model" width="90" x="715" y="136">
        <list key="application_parameters"/>
        <parameter key="create_view" value="false"/>
      </operator>
      <operator activated="true" class="performance_classification" compatibility="9.8.001" expanded="true" height="82" name="Performance" width="90" x="849" y="289">
        <parameter key="main_criterion" value="first"/>
        <parameter key="accuracy" value="true"/>
        <parameter key="classification_error" value="false"/>
        <parameter key="kappa" value="false"/>
        <parameter key="weighted_mean_recall" value="false"/>
        <parameter key="weighted_mean_precision" value="false"/>
        <parameter key="spearman_rho" value="false"/>
        <parameter key="kendall_tau" value="false"/>
        <parameter key="absolute_error" value="false"/>
        <parameter key="relative_error" value="false"/>
        <parameter key="relative_error_lenient" value="false"/>
        <parameter key="relative_error_strict" value="false"/>
        <parameter key="normalized_absolute_error" value="false"/>
        <parameter key="root_mean_squared_error" value="false"/>
        <parameter key="root_relative_squared_error" value="false"/>
        <parameter key="squared_error" value="false"/>
        <parameter key="correlation" value="false"/>
        <parameter key="squared_correlation" value="false"/>
        <parameter key="cross-entropy" value="false"/>
        <parameter key="margin" value="false"/>
        <parameter key="soft_margin_loss" value="false"/>
        <parameter key="logistic_loss" value="false"/>
        <parameter key="skip_undefined_labels" value="true"/>
        <parameter key="use_example_weights" value="true"/>
        <list key="class_weights"/>
      </operator>
      <connect from_op="Retrieve train" from_port="output" to_op="Set Role" to_port="example set input"/>
      <connect from_op="Set Role" from_port="example set output" to_op="Split Data" to_port="example set"/>
      <connect from_op="Split Data" from_port="partition 1" to_op="k-NN" to_port="training set"/>
      <connect from_op="Split Data" from_port="partition 2" to_op="Apply Model" to_port="unlabelled data"/>
      <connect from_op="k-NN" from_port="model" to_op="Apply Model" to_port="model"/>
      <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
      <connect from_op="Apply Model" from_port="model" to_port="result 1"/>
      <connect from_op="Performance" from_port="performance" to_port="result 2"/>
      <portSpacing port="source_input 1" spacing="0"/>
      <portSpacing port="sink_result 1" spacing="0"/>
      <portSpacing port="sink_result 2" spacing="0"/>
      <portSpacing port="sink_result 3" spacing="0"/>
    </process>
  </operator>
</process>


Answers

  • Caperez
    Caperez Altair Community Member
    Hi @tenz

    You are trying to run a multi-classification model with a numerical label. please change the  price_range from numerical to nominal. 
    As example you can run your xlm model with the iris dataset from examples. 



    regards

Welcome!

It looks like you're new here. Sign in or register to get started.

Welcome!

It looks like you're new here. Sign in or register to get started.