I used this tutorial on youTube with the videoid VbNhvYQZ2v0 and the rapidMiner Academy TextMining and Machine Learning course to construct my Processes.
<?xml version="1.0" encoding="UTF-8"?><process version="9.3.001">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="9.3.001" expanded="true" name="Process">
<parameter key="logverbosity" value="init"/>
<parameter key="random_seed" value="2001"/>
<parameter key="send_mail" value="never"/>
<parameter key="notification_email" value=""/>
<parameter key="process_duration_for_mail" value="30"/>
<parameter key="encoding" value="SYSTEM"/>
<process expanded="true">
<operator activated="true" class="retrieve" compatibility="9.3.001" expanded="true" height="68" name="Retrieve" width="90" x="112" y="340">
<parameter key="repository_entry" value="../Data/SampleDataYouTubeComments"/>
</operator>
<operator activated="true" class="nominal_to_text" compatibility="9.3.001" expanded="true" height="82" name="Nominal to Text" width="90" x="45" y="187">
<parameter key="attribute_filter_type" value="subset"/>
<parameter key="attribute" value="comment"/>
<parameter key="attributes" value="|comment|product_name|product_type"/>
<parameter key="use_except_expression" value="false"/>
<parameter key="value_type" value="nominal"/>
<parameter key="use_value_type_exception" value="false"/>
<parameter key="except_value_type" value="file_path"/>
<parameter key="block_type" value="single_value"/>
<parameter key="use_block_type_exception" value="false"/>
<parameter key="except_block_type" value="single_value"/>
<parameter key="invert_selection" value="false"/>
<parameter key="include_special_attributes" value="false"/>
</operator>
<operator activated="true" class="text:process_document_from_data" compatibility="8.2.000" expanded="true" height="82" name="Process Documents from Data" width="90" x="45" y="34">
<parameter key="create_word_vector" value="true"/>
<parameter key="vector_creation" value="TF-IDF"/>
<parameter key="add_meta_information" value="true"/>
<parameter key="keep_text" value="true"/>
<parameter key="prune_method" value="absolute"/>
<parameter key="prune_below_percent" value="3.0"/>
<parameter key="prune_above_percent" value="30.0"/>
<parameter key="prune_below_absolute" value="2"/>
<parameter key="prune_above_absolute" value="1000"/>
<parameter key="prune_below_rank" value="0.05"/>
<parameter key="prune_above_rank" value="0.95"/>
<parameter key="datamanagement" value="double_sparse_array"/>
<parameter key="data_management" value="auto"/>
<parameter key="select_attributes_and_weights" value="false"/>
<list key="specify_weights"/>
<process expanded="true">
<operator activated="true" class="text:tokenize" compatibility="8.2.000" expanded="true" height="68" name="Tokenize" width="90" x="45" y="34">
<parameter key="mode" value="non letters"/>
<parameter key="characters" value=".:"/>
<parameter key="language" value="English"/>
<parameter key="max_token_length" value="3"/>
</operator>
<operator activated="true" class="text:transform_cases" compatibility="8.2.000" expanded="true" height="68" name="Transform Cases" width="90" x="179" y="34">
<parameter key="transform_to" value="lower case"/>
</operator>
<operator activated="true" class="text:filter_stopwords_english" compatibility="8.2.000" expanded="true" height="68" name="Filter Stopwords (English)" width="90" x="313" y="34"/>
<operator activated="true" class="text:stem_porter" compatibility="8.2.000" expanded="true" height="68" name="Stem (Porter)" width="90" x="447" y="34"/>
<operator activated="true" class="text:generate_n_grams_terms" compatibility="8.2.000" expanded="true" height="68" name="Generate n-Grams (Terms)" width="90" x="581" y="34">
<parameter key="max_length" value="2"/>
</operator>
<operator activated="true" class="text:filter_by_length" compatibility="8.2.000" expanded="true" height="68" name="Filter Tokens (by Length)" width="90" x="782" y="34">
<parameter key="min_chars" value="2"/>
<parameter key="max_chars" value="25"/>
</operator>
<connect from_port="document" to_op="Tokenize" to_port="document"/>
<connect from_op="Tokenize" from_port="document" to_op="Transform Cases" to_port="document"/>
<connect from_op="Transform Cases" from_port="document" to_op="Filter Stopwords (English)" to_port="document"/>
<connect from_op="Filter Stopwords (English)" from_port="document" to_op="Stem (Porter)" to_port="document"/>
<connect from_op="Stem (Porter)" from_port="document" to_op="Generate n-Grams (Terms)" to_port="document"/>
<connect from_op="Generate n-Grams (Terms)" from_port="document" to_op="Filter Tokens (by Length)" to_port="document"/>
<connect from_op="Filter Tokens (by Length)" from_port="document" to_port="document 1"/>
<portSpacing port="source_document" spacing="0"/>
<portSpacing port="sink_document 1" spacing="0"/>
<portSpacing port="sink_document 2" spacing="0"/>
</process>
</operator>
<operator activated="true" class="store" compatibility="9.3.001" expanded="true" height="68" name="Store Wordlist" width="90" x="782" y="85">
<parameter key="repository_entry" value="../Results/WordlistForCR"/>
</operator>
<operator activated="true" class="numerical_to_polynominal" compatibility="9.3.001" expanded="true" height="82" name="Numerical to Polynominal" width="90" x="179" y="34">
<parameter key="attribute_filter_type" value="single"/>
<parameter key="attribute" value="Customer Requirement"/>
<parameter key="attributes" value=""/>
<parameter key="use_except_expression" value="false"/>
<parameter key="value_type" value="numeric"/>
<parameter key="use_value_type_exception" value="false"/>
<parameter key="except_value_type" value="real"/>
<parameter key="block_type" value="value_series"/>
<parameter key="use_block_type_exception" value="false"/>
<parameter key="except_block_type" value="value_series_end"/>
<parameter key="invert_selection" value="false"/>
<parameter key="include_special_attributes" value="false"/>
</operator>
<operator activated="true" class="map" compatibility="9.3.001" expanded="true" height="82" name="Map" width="90" x="313" y="34">
<parameter key="attribute_filter_type" value="single"/>
<parameter key="attribute" value="Customer Requirement"/>
<parameter key="attributes" value=""/>
<parameter key="use_except_expression" value="false"/>
<parameter key="value_type" value="attribute_value"/>
<parameter key="use_value_type_exception" value="false"/>
<parameter key="except_value_type" value="time"/>
<parameter key="block_type" value="attribute_block"/>
<parameter key="use_block_type_exception" value="false"/>
<parameter key="except_block_type" value="value_matrix_row_start"/>
<parameter key="invert_selection" value="false"/>
<parameter key="include_special_attributes" value="false"/>
<list key="value_mappings">
<parameter key="1" value="true"/>
<parameter key="0" value="false"/>
</list>
<parameter key="consider_regular_expressions" value="false"/>
<parameter key="add_default_mapping" value="false"/>
</operator>
<operator activated="true" class="set_role" compatibility="9.3.001" expanded="true" height="82" name="Set Role" width="90" x="447" y="34">
<parameter key="attribute_name" value="Customer Requirement"/>
<parameter key="target_role" value="label"/>
<list key="set_additional_roles">
<parameter key="comment_id" value="id"/>
</list>
</operator>
<operator activated="true" class="store" compatibility="9.3.001" expanded="true" height="68" name="Store" width="90" x="581" y="34">
<parameter key="repository_entry" value="../Data/PrepedTrainingDataYouTubeComments"/>
</operator>
<connect from_op="Retrieve" from_port="output" to_op="Nominal to Text" to_port="example set input"/>
<connect from_op="Nominal to Text" from_port="example set output" to_op="Process Documents from Data" to_port="example set"/>
<connect from_op="Process Documents from Data" from_port="example set" to_op="Numerical to Polynominal" to_port="example set input"/>
<connect from_op="Process Documents from Data" from_port="word list" to_op="Store Wordlist" to_port="input"/>
<connect from_op="Store Wordlist" from_port="through" to_port="result 2"/>
<connect from_op="Numerical to Polynominal" from_port="example set output" to_op="Map" to_port="example set input"/>
<connect from_op="Map" from_port="example set output" to_op="Set Role" to_port="example set input"/>
<connect from_op="Set Role" from_port="example set output" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
</process>
</operator>
</process>