An exclusive raffle opportunity for active members like you! Complete your profile, answer questions and get your first accepted badge to enter the raffle.
<?xml version="1.0" encoding="UTF-8"?><process version="9.2.001"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="9.2.001" expanded="true" name="Process" origin="GENERATED_TUTORIAL"> <parameter key="logverbosity" value="init"/> <parameter key="random_seed" value="2001"/> <parameter key="send_mail" value="never"/> <parameter key="notification_email" value=""/> <parameter key="process_duration_for_mail" value="30"/> <parameter key="encoding" value="SYSTEM"/> <process expanded="true"> <operator activated="true" class="retrieve" compatibility="9.2.001" expanded="true" height="68" name="Retrieve Deals" origin="GENERATED_TUTORIAL" width="90" x="45" y="34"> <parameter key="repository_entry" value="//Samples/data/Deals"/> </operator> <operator activated="true" class="multiply" compatibility="9.2.001" expanded="true" height="103" name="Multiply" width="90" x="179" y="34"/> <operator activated="true" class="h2o:logistic_regression" compatibility="9.2.000" expanded="true" height="124" name="Logistic Regression" origin="GENERATED_TUTORIAL" width="90" x="313" y="34"> <parameter key="solver" value="AUTO"/> <parameter key="reproducible" value="true"/> <parameter key="maximum_number_of_threads" value="4"/> <parameter key="use_regularization" value="false"/> <parameter key="lambda_search" value="false"/> <parameter key="number_of_lambdas" value="0"/> <parameter key="lambda_min_ratio" value="0.0"/> <parameter key="early_stopping" value="true"/> <parameter key="stopping_rounds" value="3"/> <parameter key="stopping_tolerance" value="0.001"/> <parameter key="standardize" value="true"/> <parameter key="non-negative_coefficients" value="false"/> <parameter key="add_intercept" value="true"/> <parameter key="compute_p-values" value="true"/> <parameter key="remove_collinear_columns" value="true"/> <parameter key="missing_values_handling" value="MeanImputation"/> <parameter key="max_iterations" value="0"/> <parameter key="max_runtime_seconds" value="0"/> </operator> <operator activated="true" class="apply_model" compatibility="9.2.001" expanded="true" height="82" name="Apply Model" origin="GENERATED_TUTORIAL" width="90" x="447" y="34"> <list key="application_parameters"/> <parameter key="create_view" value="false"/> </operator> <operator activated="true" class="performance_classification" compatibility="9.2.001" expanded="true" height="82" name="Performance" origin="GENERATED_TUTORIAL" width="90" x="581" y="34"> <parameter key="main_criterion" value="first"/> <parameter key="accuracy" value="true"/> <parameter key="classification_error" value="false"/> <parameter key="kappa" value="false"/> <parameter key="weighted_mean_recall" value="false"/> <parameter key="weighted_mean_precision" value="false"/> <parameter key="spearman_rho" value="false"/> <parameter key="kendall_tau" value="false"/> <parameter key="absolute_error" value="false"/> <parameter key="relative_error" value="false"/> <parameter key="relative_error_lenient" value="false"/> <parameter key="relative_error_strict" value="false"/> <parameter key="normalized_absolute_error" value="false"/> <parameter key="root_mean_squared_error" value="false"/> <parameter key="root_relative_squared_error" value="false"/> <parameter key="squared_error" value="false"/> <parameter key="correlation" value="false"/> <parameter key="squared_correlation" value="false"/> <parameter key="cross-entropy" value="false"/> <parameter key="margin" value="false"/> <parameter key="soft_margin_loss" value="false"/> <parameter key="logistic_loss" value="false"/> <parameter key="skip_undefined_labels" value="true"/> <parameter key="use_example_weights" value="true"/> <list key="class_weights"/> </operator> <operator activated="true" class="h2o:generalized_linear_model" compatibility="9.2.000" expanded="true" height="124" name="Generalized Linear Model" width="90" x="313" y="187"> <parameter key="family" value="AUTO"/> <parameter key="link" value="family_default"/> <parameter key="solver" value="AUTO"/> <parameter key="reproducible" value="false"/> <parameter key="maximum_number_of_threads" value="4"/> <parameter key="use_regularization" value="false"/> <parameter key="lambda_search" value="false"/> <parameter key="number_of_lambdas" value="0"/> <parameter key="lambda_min_ratio" value="0.0"/> <parameter key="early_stopping" value="true"/> <parameter key="stopping_rounds" value="3"/> <parameter key="stopping_tolerance" value="0.001"/> <parameter key="standardize" value="true"/> <parameter key="non-negative_coefficients" value="false"/> <parameter key="add_intercept" value="true"/> <parameter key="compute_p-values" value="true"/> <parameter key="remove_collinear_columns" value="true"/> <parameter key="missing_values_handling" value="MeanImputation"/> <parameter key="max_iterations" value="0"/> <parameter key="specify_beta_constraints" value="false"/> <list key="beta_constraints"/> <parameter key="max_runtime_seconds" value="0"/> <list key="expert_parameters"/> </operator> <operator activated="true" class="apply_model" compatibility="9.2.001" expanded="true" height="82" name="Apply Model (2)" origin="GENERATED_TUTORIAL" width="90" x="447" y="187"> <list key="application_parameters"/> <parameter key="create_view" value="false"/> </operator> <operator activated="true" class="performance_classification" compatibility="9.2.001" expanded="true" height="82" name="Performance (2)" origin="GENERATED_TUTORIAL" width="90" x="581" y="187"> <parameter key="main_criterion" value="first"/> <parameter key="accuracy" value="true"/> <parameter key="classification_error" value="false"/> <parameter key="kappa" value="false"/> <parameter key="weighted_mean_recall" value="false"/> <parameter key="weighted_mean_precision" value="false"/> <parameter key="spearman_rho" value="false"/> <parameter key="kendall_tau" value="false"/> <parameter key="absolute_error" value="false"/> <parameter key="relative_error" value="false"/> <parameter key="relative_error_lenient" value="false"/> <parameter key="relative_error_strict" value="false"/> <parameter key="normalized_absolute_error" value="false"/> <parameter key="root_mean_squared_error" value="false"/> <parameter key="root_relative_squared_error" value="false"/> <parameter key="squared_error" value="false"/> <parameter key="correlation" value="false"/> <parameter key="squared_correlation" value="false"/> <parameter key="cross-entropy" value="false"/> <parameter key="margin" value="false"/> <parameter key="soft_margin_loss" value="false"/> <parameter key="logistic_loss" value="false"/> <parameter key="skip_undefined_labels" value="true"/> <parameter key="use_example_weights" value="true"/> <list key="class_weights"/> </operator> <connect from_op="Retrieve Deals" from_port="output" to_op="Multiply" to_port="input"/> <connect from_op="Multiply" from_port="output 1" to_op="Logistic Regression" to_port="training set"/> <connect from_op="Multiply" from_port="output 2" to_op="Generalized Linear Model" to_port="training set"/> <connect from_op="Logistic Regression" from_port="model" to_op="Apply Model" to_port="model"/> <connect from_op="Logistic Regression" from_port="exampleSet" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/> <connect from_op="Apply Model" from_port="model" to_port="result 2"/> <connect from_op="Performance" from_port="performance" to_port="result 1"/> <connect from_op="Generalized Linear Model" from_port="model" to_op="Apply Model (2)" to_port="model"/> <connect from_op="Generalized Linear Model" from_port="exampleSet" to_op="Apply Model (2)" to_port="unlabelled data"/> <connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/> <connect from_op="Apply Model (2)" from_port="model" to_port="result 4"/> <connect from_op="Performance (2)" from_port="performance" to_port="result 3"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> <portSpacing port="sink_result 4" spacing="0"/> <portSpacing port="sink_result 5" spacing="0"/> </process> </operator> </process>
<div>p = exp(y*)/(1 + exp(y*)), where </div><div>y* = Log ( p / (1-p) ) = b0 + b1*x1 + b2*x2 + ... + bk*xk</div>