A program to recognize and reward our most engaged community members
<?xml version="1.0" encoding="UTF-8"?><process version="9.4.000-SNAPSHOT"><br> <context><br> <input/><br> <output/><br> <macros/><br> </context><br> <operator activated="true" class="process" compatibility="9.4.000-SNAPSHOT" expanded="true" name="Process"><br> <parameter key="logverbosity" value="init"/><br> <parameter key="random_seed" value="2001"/><br> <parameter key="send_mail" value="never"/><br> <parameter key="notification_email" value=""/><br> <parameter key="process_duration_for_mail" value="30"/><br> <parameter key="encoding" value="UTF-8"/><br> <process expanded="true"><br> <operator activated="true" class="retrieve" compatibility="9.4.000-SNAPSHOT" expanded="true" height="68" name="Retrieve Titanic Training" width="90" x="45" y="34"><br> <parameter key="repository_entry" value="//Samples/data/Titanic Training"/><br> </operator><br> <operator activated="true" class="sample" compatibility="9.4.000-SNAPSHOT" expanded="true" height="82" name="Sample" width="90" x="179" y="34"><br> <parameter key="sample" value="absolute"/><br> <parameter key="balance_data" value="false"/><br> <parameter key="sample_size" value="100"/><br> <parameter key="sample_ratio" value="0.1"/><br> <parameter key="sample_probability" value="0.1"/><br> <list key="sample_size_per_class"/><br> <list key="sample_ratio_per_class"/><br> <list key="sample_probability_per_class"/><br> <parameter key="use_local_random_seed" value="false"/><br> <parameter key="local_random_seed" value="1992"/><br> </operator><br> <operator activated="true" class="concurrency:cross_validation" compatibility="9.4.000-SNAPSHOT" expanded="true" height="145" name="Validation" width="90" x="313" y="34"><br> <parameter key="split_on_batch_attribute" value="false"/><br> <parameter key="leave_one_out" value="false"/><br> <parameter key="number_of_folds" value="10"/><br> <parameter key="sampling_type" value="stratified sampling"/><br> <parameter key="use_local_random_seed" value="false"/><br> <parameter key="local_random_seed" value="1992"/><br> <parameter key="enable_parallel_execution" value="true"/><br> <process expanded="true"><br> <operator activated="true" class="concurrency:parallel_decision_tree" compatibility="9.4.000-SNAPSHOT" expanded="true" height="103" name="Decision Tree" width="90" x="45" y="34"><br> <parameter key="criterion" value="gain_ratio"/><br> <parameter key="maximal_depth" value="10"/><br> <parameter key="apply_pruning" value="true"/><br> <parameter key="confidence" value="0.1"/><br> <parameter key="apply_prepruning" value="true"/><br> <parameter key="minimal_gain" value="0.01"/><br> <parameter key="minimal_leaf_size" value="2"/><br> <parameter key="minimal_size_for_split" value="4"/><br> <parameter key="number_of_prepruning_alternatives" value="3"/><br> </operator><br> <connect from_port="training set" to_op="Decision Tree" to_port="training set"/><br> <connect from_op="Decision Tree" from_port="model" to_port="model"/><br> <portSpacing port="source_training set" spacing="0"/><br> <portSpacing port="sink_model" spacing="0"/><br> <portSpacing port="sink_through 1" spacing="0"/><br> <description align="left" color="green" colored="true" height="80" resized="true" width="248" x="37" y="158">In the training phase, a model is built on the current training data set. (90 % of data by default, 10 times)</description><br> </process><br> <process expanded="true"><br> <operator activated="true" class="apply_model" compatibility="9.4.000-SNAPSHOT" expanded="true" height="82" name="Apply Model" width="90" x="45" y="34"><br> <list key="application_parameters"/><br> <parameter key="create_view" value="false"/><br> </operator><br> <operator activated="true" class="performance" compatibility="9.4.000-SNAPSHOT" expanded="true" height="82" name="Performance" width="90" x="179" y="34"><br> <parameter key="use_example_weights" value="true"/><br> </operator><br> <connect from_port="model" to_op="Apply Model" to_port="model"/><br> <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/><br> <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/><br> <connect from_op="Performance" from_port="performance" to_port="performance 1"/><br> <connect from_op="Performance" from_port="example set" to_port="test set results"/><br> <portSpacing port="source_model" spacing="0"/><br> <portSpacing port="source_test set" spacing="0"/><br> <portSpacing port="source_through 1" spacing="0"/><br> <portSpacing port="sink_test set results" spacing="0"/><br> <portSpacing port="sink_performance 1" spacing="0"/><br> <portSpacing port="sink_performance 2" spacing="0"/><br> <description align="left" color="blue" colored="true" height="103" resized="true" width="315" x="38" y="158">The model created in the Training step is applied to the current test set (10 %).<br/>The performance is evaluated and sent to the operator results.</description><br> </process><br> <description align="center" color="transparent" colored="false" width="126">A cross-validation evaluating a decision tree model.</description><br> </operator><br> <connect from_op="Retrieve Titanic Training" from_port="output" to_op="Sample" to_port="example set input"/><br> <connect from_op="Sample" from_port="example set output" to_op="Validation" to_port="example set"/><br> <connect from_op="Validation" from_port="model" to_port="result 1"/><br> <connect from_op="Validation" from_port="test result set" to_port="result 2"/><br> <portSpacing port="source_input 1" spacing="0"/><br> <portSpacing port="sink_result 1" spacing="0"/><br> <portSpacing port="sink_result 2" spacing="0"/><br> <portSpacing port="sink_result 3" spacing="0"/><br> </process><br> </operator><br></process>