A program to recognize and reward our most engaged community members
<?xml version="1.0" encoding="UTF-8"?><process version="9.2.001"><br> <context><br> <input/><br> <output/><br> <macros/><br> </context><br> <operator activated="true" class="process" compatibility="9.2.001" expanded="true" name="Process"><br> <parameter key="logverbosity" value="init"/><br> <parameter key="random_seed" value="2001"/><br> <parameter key="send_mail" value="never"/><br> <parameter key="notification_email" value=""/><br> <parameter key="process_duration_for_mail" value="30"/><br> <parameter key="encoding" value="UTF-8"/><br> <process expanded="true"><br> <operator activated="true" class="retrieve" compatibility="9.2.001" expanded="true" height="68" name="Retrieve Iris" width="90" x="45" y="85"><br> <parameter key="repository_entry" value="//Samples/data/Iris"/><br> </operator><br> <operator activated="true" class="split_data" compatibility="9.2.001" expanded="true" height="103" name="Split Data" width="90" x="179" y="85"><br> <enumeration key="partitions"><br> <parameter key="ratio" value="0.66"/><br> <parameter key="ratio" value="0.34"/><br> </enumeration><br> <parameter key="sampling_type" value="automatic"/><br> <parameter key="use_local_random_seed" value="false"/><br> <parameter key="local_random_seed" value="1992"/><br> </operator><br> <operator activated="true" class="naive_bayes" compatibility="9.2.001" expanded="true" height="82" name="Naive Bayes" width="90" x="313" y="34"><br> <parameter key="laplace_correction" value="true"/><br> </operator><br> <operator activated="true" class="apply_model" compatibility="9.2.001" expanded="true" height="82" name="Apply Model" width="90" x="447" y="136"><br> <list key="application_parameters"/><br> <parameter key="create_view" value="false"/><br> </operator><br> <operator activated="true" class="generate_prediction_ranking" compatibility="9.2.001" expanded="true" height="82" name="Generate Prediction Ranking" width="90" x="581" y="136"><br> <parameter key="number_of_ranks" value="2"/><br> <parameter key="remove_old_predictions" value="true"/><br> </operator><br> <connect from_op="Retrieve Iris" from_port="output" to_op="Split Data" to_port="example set"/><br> <connect from_op="Split Data" from_port="partition 1" to_op="Naive Bayes" to_port="training set"/><br> <connect from_op="Split Data" from_port="partition 2" to_op="Apply Model" to_port="unlabelled data"/><br> <connect from_op="Naive Bayes" from_port="model" to_op="Apply Model" to_port="model"/><br> <connect from_op="Apply Model" from_port="labelled data" to_op="Generate Prediction Ranking" to_port="example set input"/><br> <connect from_op="Generate Prediction Ranking" from_port="example set output" to_port="result 1"/><br> <portSpacing port="source_input 1" spacing="0"/><br> <portSpacing port="sink_result 1" spacing="0"/><br> <portSpacing port="sink_result 2" spacing="0"/><br> </process><br> </operator><br></process>
Thanks, I'll try to make something out of this.