"Deep learning extension : Questions and Warnings in the process"

New Altair Community Member
Updated by Jocelyn
Hi all,

I'm using the new Deep Learning extension (TS to Tensor and Deep Learning (Tensor) operators) in a binary classification project.
The dataset is composed of a collection of 4 examples set. Each example set has 5 attributes (4 regular attributes + target) and 800000 rows.
The target has the same value (0 or 1) for a given example set :

1. When I'm executing the process, the process duration is around 5 hours ! ...( I have a laptop 4 x 2.5 GHz / 16 Go RAM / Windows 10).
My questions are:
2. As a workaround I'm using the Sample operator to reduce the number of rows from 800000 -> 1000 and in fine decrease significantly the computation time. But when executed, the process raises some "warnings" in the Log :
"Couldn't update the network in epoch 1"
"Couldn't update the network in epoch 2"
"Couldn't update the network in epoch 3"
.
"Couldn't update the network in epoch N"
Can you explain this behaviour ? What I have to do in my proces to avoid that ?
Regards,
Lionel
NB : the data :
- the 4 example sets (files signal_x_target_y) to store in a directory to set in the Loop Files operator :
https://drive.google.com/open?id=1tNHkk-N7HVivWmDKaByEIXyk_8UKZU3R
- the file metadata_train.csv to feed the Read CSV operator inside the Loop Collection operator :
https://drive.google.com/open?id=1oTXFeb60FfpjlG7b46aSIwfkcCe7NCZ_
NB2 : The process :
I'm using the new Deep Learning extension (TS to Tensor and Deep Learning (Tensor) operators) in a binary classification project.
The dataset is composed of a collection of 4 examples set. Each example set has 5 attributes (4 regular attributes + target) and 800000 rows.
The target has the same value (0 or 1) for a given example set :

1. When I'm executing the process, the process duration is around 5 hours ! ...( I have a laptop 4 x 2.5 GHz / 16 Go RAM / Windows 10).
My questions are:
- Is it the normal expected time ?
- If yes, what do you recommend me, knowing that I'm performing just preliminary tests (The whole dataset has in reality 2904 example sets !)
2. As a workaround I'm using the Sample operator to reduce the number of rows from 800000 -> 1000 and in fine decrease significantly the computation time. But when executed, the process raises some "warnings" in the Log :
"Couldn't update the network in epoch 1"
"Couldn't update the network in epoch 2"
"Couldn't update the network in epoch 3"
.
"Couldn't update the network in epoch N"
Can you explain this behaviour ? What I have to do in my proces to avoid that ?
Regards,
Lionel
NB : the data :
- the 4 example sets (files signal_x_target_y) to store in a directory to set in the Loop Files operator :
https://drive.google.com/open?id=1tNHkk-N7HVivWmDKaByEIXyk_8UKZU3R
- the file metadata_train.csv to feed the Read CSV operator inside the Loop Collection operator :
https://drive.google.com/open?id=1oTXFeb60FfpjlG7b46aSIwfkcCe7NCZ_
NB2 : The process :
<?xml version="1.0" encoding="UTF-8"?><process version="9.2.000-RC"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="9.2.000-RC" expanded="true" name="Process"> <parameter key="logverbosity" value="init"/> <parameter key="random_seed" value="2001"/> <parameter key="send_mail" value="never"/> <parameter key="notification_email" value=""/> <parameter key="process_duration_for_mail" value="30"/> <parameter key="encoding" value="SYSTEM"/> <process expanded="true"> <operator activated="true" class="concurrency:loop_files" compatibility="9.2.000-RC" expanded="true" height="82" name="Loop Files" width="90" x="45" y="85"> <parameter key="directory" value="D:\Lionel\Data_sciences\Competitions\all\Data"/> <parameter key="filter_type" value="glob"/> <parameter key="recursive" value="false"/> <parameter key="enable_macros" value="false"/> <parameter key="macro_for_file_name" value="file_name"/> <parameter key="macro_for_file_type" value="file_type"/> <parameter key="macro_for_folder_name" value="folder_name"/> <parameter key="reuse_results" value="false"/> <parameter key="enable_parallel_execution" value="true"/> <process expanded="true"> <operator activated="true" class="read_csv" compatibility="9.2.000-RC" expanded="true" height="68" name="Read CSV" width="90" x="246" y="85"> <parameter key="column_separators" value=","/> <parameter key="trim_lines" value="false"/> <parameter key="use_quotes" value="true"/> <parameter key="quotes_character" value="""/> <parameter key="escape_character" value="\"/> <parameter key="skip_comments" value="false"/> <parameter key="comment_characters" value="#"/> <parameter key="starting_row" value="1"/> <parameter key="parse_numbers" value="true"/> <parameter key="decimal_character" value="."/> <parameter key="grouped_digits" value="false"/> <parameter key="grouping_character" value=","/> <parameter key="infinity_representation" value=""/> <parameter key="date_format" value=""/> <parameter key="first_row_as_names" value="true"/> <list key="annotations"/> <parameter key="time_zone" value="SYSTEM"/> <parameter key="locale" value="English (United States)"/> <parameter key="encoding" value="SYSTEM"/> <parameter key="read_all_values_as_polynominal" value="false"/> <list key="data_set_meta_data_information"/> <parameter key="read_not_matching_values_as_missings" value="true"/> <parameter key="datamanagement" value="double_array"/> <parameter key="data_management" value="auto"/> </operator> <connect from_port="file object" to_op="Read CSV" to_port="file"/> <connect from_op="Read CSV" from_port="output" to_port="output 1"/> <portSpacing port="source_file object" spacing="0"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_output 1" spacing="0"/> <portSpacing port="sink_output 2" spacing="0"/> </process> </operator> <operator activated="true" breakpoints="after" class="loop_collection" compatibility="9.2.000-RC" expanded="true" height="82" name="Loop Collection" width="90" x="179" y="85"> <parameter key="set_iteration_macro" value="true"/> <parameter key="macro_name" value="iteration"/> <parameter key="macro_start_value" value="0"/> <parameter key="unfold" value="false"/> <process expanded="true"> <operator activated="true" class="read_csv" compatibility="9.2.000-RC" expanded="true" height="68" name="Read CSV (2)" width="90" x="112" y="187"> <parameter key="csv_file" value="D:\Lionel\Data_sciences\Competitions\all\metadata_train.csv"/> <parameter key="column_separators" value=","/> <parameter key="trim_lines" value="false"/> <parameter key="use_quotes" value="true"/> <parameter key="quotes_character" value="""/> <parameter key="escape_character" value="\"/> <parameter key="skip_comments" value="false"/> <parameter key="comment_characters" value="#"/> <parameter key="starting_row" value="1"/> <parameter key="parse_numbers" value="true"/> <parameter key="decimal_character" value="."/> <parameter key="grouped_digits" value="false"/> <parameter key="grouping_character" value=","/> <parameter key="infinity_representation" value=""/> <parameter key="date_format" value=""/> <parameter key="first_row_as_names" value="true"/> <list key="annotations"/> <parameter key="time_zone" value="SYSTEM"/> <parameter key="locale" value="English (United States)"/> <parameter key="encoding" value="SYSTEM"/> <parameter key="read_all_values_as_polynominal" value="false"/> <list key="data_set_meta_data_information"/> <parameter key="read_not_matching_values_as_missings" value="true"/> <parameter key="datamanagement" value="double_array"/> <parameter key="data_management" value="auto"/> </operator> <operator activated="true" class="python_scripting:execute_python" compatibility="9.1.000" expanded="true" height="124" name="Execute Python" width="90" x="246" y="85"> <parameter key="script" value="import pandas as pd # rm_main is a mandatory function, # the number of arguments has to be the number of input ports (can be none) def rm_main(data,data_2): data['target'] = data_2['target'][3*%{iteration}] data.rm_metadata["target"]=(None,'label') # connect 2 output ports to see the results return data"/> <parameter key="use_default_python" value="true"/> <parameter key="package_manager" value="conda (anaconda)"/> </operator> <operator activated="true" class="rename_by_replacing" compatibility="9.2.000-RC" expanded="true" height="82" name="Rename by Replacing" width="90" x="514" y="85"> <parameter key="attribute_filter_type" value="regular_expression"/> <parameter key="attribute" value=""/> <parameter key="attributes" value=""/> <parameter key="regular_expression" value="att.*"/> <parameter key="use_except_expression" value="false"/> <parameter key="value_type" value="attribute_value"/> <parameter key="use_value_type_exception" value="false"/> <parameter key="except_value_type" value="time"/> <parameter key="block_type" value="attribute_block"/> <parameter key="use_block_type_exception" value="false"/> <parameter key="except_block_type" value="value_matrix_row_start"/> <parameter key="invert_selection" value="false"/> <parameter key="include_special_attributes" value="false"/> <parameter key="replace_what" value="att"/> </operator> <operator activated="true" class="concurrency:loop_attributes" compatibility="9.2.000-RC" expanded="true" height="82" name="Loop Attributes" width="90" x="648" y="85"> <parameter key="attribute_filter_type" value="regular_expression"/> <parameter key="attribute" value=""/> <parameter key="attributes" value=""/> <parameter key="regular_expression" value="target"/> <parameter key="use_except_expression" value="false"/> <parameter key="value_type" value="attribute_value"/> <parameter key="use_value_type_exception" value="false"/> <parameter key="except_value_type" value="time"/> <parameter key="block_type" value="attribute_block"/> <parameter key="use_block_type_exception" value="false"/> <parameter key="except_block_type" value="value_matrix_row_start"/> <parameter key="invert_selection" value="true"/> <parameter key="include_special_attributes" value="false"/> <parameter key="attribute_name_macro" value="loop_attribute"/> <parameter key="reuse_results" value="true"/> <parameter key="enable_parallel_execution" value="true"/> <process expanded="true"> <operator activated="true" class="branch" compatibility="9.2.000-RC" expanded="true" height="103" name="Branch" width="90" x="246" y="34"> <parameter key="condition_type" value="expression"/> <parameter key="expression" value="eval(%{loop_attribute})%3==0 && %{loop_attribute}!=0 && %{loop_attribute}!=1&& %{loop_attribute}!=2"/> <parameter key="io_object" value="ANOVAMatrix"/> <parameter key="return_inner_output" value="true"/> <process expanded="true"> <operator activated="true" class="rename_by_replacing" compatibility="9.2.000-RC" expanded="true" height="82" name="Rename by Replacing (2)" width="90" x="179" y="136"> <parameter key="attribute_filter_type" value="all"/> <parameter key="attribute" value=""/> <parameter key="attributes" value=""/> <parameter key="regular_expression" value="0|1|2"/> <parameter key="use_except_expression" value="false"/> <parameter key="value_type" value="attribute_value"/> <parameter key="use_value_type_exception" value="false"/> <parameter key="except_value_type" value="time"/> <parameter key="block_type" value="attribute_block"/> <parameter key="use_block_type_exception" value="false"/> <parameter key="except_block_type" value="value_matrix_row_start"/> <parameter key="invert_selection" value="false"/> <parameter key="include_special_attributes" value="false"/> <parameter key="replace_what" value="%{loop_attribute}"/> <parameter key="replace_by" value="0"/> </operator> <connect from_port="condition" to_port="input 1"/> <connect from_port="input 1" to_op="Rename by Replacing (2)" to_port="example set input"/> <connect from_op="Rename by Replacing (2)" from_port="example set output" to_port="input 2"/> <portSpacing port="source_condition" spacing="0"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="source_input 2" spacing="0"/> <portSpacing port="sink_input 1" spacing="0"/> <portSpacing port="sink_input 2" spacing="0"/> <portSpacing port="sink_input 3" spacing="0"/> </process> <process expanded="true"> <connect from_port="condition" to_port="input 1"/> <connect from_port="input 1" to_port="input 2"/> <portSpacing port="source_condition" spacing="0"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="source_input 2" spacing="0"/> <portSpacing port="sink_input 1" spacing="0"/> <portSpacing port="sink_input 2" spacing="0"/> <portSpacing port="sink_input 3" spacing="0"/> </process> </operator> <operator activated="true" class="branch" compatibility="9.2.000-RC" expanded="true" height="103" name="Branch (2)" width="90" x="447" y="34"> <parameter key="condition_type" value="expression"/> <parameter key="expression" value="eval(%{loop_attribute})%3==1 && %{loop_attribute}!=0 && %{loop_attribute}!=1&& %{loop_attribute}!=2"/> <parameter key="io_object" value="ANOVAMatrix"/> <parameter key="return_inner_output" value="true"/> <process expanded="true"> <operator activated="true" class="rename_by_replacing" compatibility="9.2.000-RC" expanded="true" height="82" name="Rename by Replacing (3)" width="90" x="179" y="136"> <parameter key="attribute_filter_type" value="all"/> <parameter key="attribute" value=""/> <parameter key="attributes" value=""/> <parameter key="regular_expression" value="0|1|2"/> <parameter key="use_except_expression" value="false"/> <parameter key="value_type" value="attribute_value"/> <parameter key="use_value_type_exception" value="false"/> <parameter key="except_value_type" value="time"/> <parameter key="block_type" value="attribute_block"/> <parameter key="use_block_type_exception" value="false"/> <parameter key="except_block_type" value="value_matrix_row_start"/> <parameter key="invert_selection" value="false"/> <parameter key="include_special_attributes" value="false"/> <parameter key="replace_what" value="%{loop_attribute}"/> <parameter key="replace_by" value="1"/> </operator> <connect from_port="condition" to_port="input 1"/> <connect from_port="input 1" to_op="Rename by Replacing (3)" to_port="example set input"/> <connect from_op="Rename by Replacing (3)" from_port="example set output" to_port="input 2"/> <portSpacing port="source_condition" spacing="0"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="source_input 2" spacing="0"/> <portSpacing port="sink_input 1" spacing="0"/> <portSpacing port="sink_input 2" spacing="0"/> <portSpacing port="sink_input 3" spacing="0"/> </process> <process expanded="true"> <connect from_port="condition" to_port="input 1"/> <connect from_port="input 1" to_port="input 2"/> <portSpacing port="source_condition" spacing="0"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="source_input 2" spacing="0"/> <portSpacing port="sink_input 1" spacing="0"/> <portSpacing port="sink_input 2" spacing="0"/> <portSpacing port="sink_input 3" spacing="0"/> </process> </operator> <operator activated="true" class="branch" compatibility="9.2.000-RC" expanded="true" height="103" name="Branch (3)" width="90" x="648" y="34"> <parameter key="condition_type" value="expression"/> <parameter key="expression" value="eval(%{loop_attribute})%3==2 && %{loop_attribute}!=0 && %{loop_attribute}!=1&& %{loop_attribute}!=2"/> <parameter key="io_object" value="ANOVAMatrix"/> <parameter key="return_inner_output" value="true"/> <process expanded="true"> <operator activated="true" class="rename_by_replacing" compatibility="9.2.000-RC" expanded="true" height="82" name="Rename by Replacing (4)" width="90" x="179" y="136"> <parameter key="attribute_filter_type" value="all"/> <parameter key="attribute" value=""/> <parameter key="attributes" value=""/> <parameter key="regular_expression" value="0|1|2"/> <parameter key="use_except_expression" value="false"/> <parameter key="value_type" value="attribute_value"/> <parameter key="use_value_type_exception" value="false"/> <parameter key="except_value_type" value="time"/> <parameter key="block_type" value="attribute_block"/> <parameter key="use_block_type_exception" value="false"/> <parameter key="except_block_type" value="value_matrix_row_start"/> <parameter key="invert_selection" value="false"/> <parameter key="include_special_attributes" value="false"/> <parameter key="replace_what" value="%{loop_attribute}"/> <parameter key="replace_by" value="2"/> </operator> <connect from_port="condition" to_port="input 1"/> <connect from_port="input 1" to_op="Rename by Replacing (4)" to_port="example set input"/> <connect from_op="Rename by Replacing (4)" from_port="example set output" to_port="input 2"/> <portSpacing port="source_condition" spacing="0"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="source_input 2" spacing="0"/> <portSpacing port="sink_input 1" spacing="0"/> <portSpacing port="sink_input 2" spacing="0"/> <portSpacing port="sink_input 3" spacing="0"/> </process> <process expanded="true"> <connect from_port="condition" to_port="input 1"/> <connect from_port="input 1" to_port="input 2"/> <portSpacing port="source_condition" spacing="0"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="source_input 2" spacing="0"/> <portSpacing port="sink_input 1" spacing="0"/> <portSpacing port="sink_input 2" spacing="0"/> <portSpacing port="sink_input 3" spacing="0"/> </process> </operator> <connect from_port="input 1" to_op="Branch" to_port="input 1"/> <connect from_op="Branch" from_port="input 2" to_op="Branch (2)" to_port="input 1"/> <connect from_op="Branch (2)" from_port="input 2" to_op="Branch (3)" to_port="input 1"/> <connect from_op="Branch (3)" from_port="input 2" to_port="output 1"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="source_input 2" spacing="0"/> <portSpacing port="sink_output 1" spacing="0"/> <portSpacing port="sink_output 2" spacing="0"/> </process> </operator> <operator activated="false" class="numerical_to_binominal" compatibility="9.2.000-RC" expanded="true" height="82" name="Numerical to Binominal" width="90" x="380" y="187"> <parameter key="attribute_filter_type" value="single"/> <parameter key="attribute" value="target"/> <parameter key="attributes" value=""/> <parameter key="use_except_expression" value="false"/> <parameter key="value_type" value="numeric"/> <parameter key="use_value_type_exception" value="false"/> <parameter key="except_value_type" value="real"/> <parameter key="block_type" value="value_series"/> <parameter key="use_block_type_exception" value="false"/> <parameter key="except_block_type" value="value_series_end"/> <parameter key="invert_selection" value="false"/> <parameter key="include_special_attributes" value="true"/> <parameter key="min" value="0.0"/> <parameter key="max" value="0.0"/> </operator> <operator activated="true" class="operator_toolbox:create_exampleset" compatibility="1.7.000" expanded="true" height="68" name="Create ExampleSet" width="90" x="514" y="340"> <parameter key="generator_type" value="numeric_series"/> <parameter key="number_of_examples" value="800000"/> <parameter key="use_stepsize" value="false"/> <list key="function_descriptions"/> <parameter key="add_id_attribute" value="false"/> <list key="numeric_series_configuration"> <parameter key="time" value="linear.1\.0.800000\.0"/> </list> <list key="date_series_configuration"/> <list key="date_series_configuration (interval)"/> <parameter key="date_format" value="yyyy-MM-dd HH:mm:ss"/> <parameter key="column_separator" value=","/> <parameter key="parse_all_as_nominal" value="false"/> <parameter key="decimal_point_character" value="."/> <parameter key="trim_attribute_names" value="true"/> </operator> <operator activated="true" class="generate_id" compatibility="9.2.000-RC" expanded="true" height="82" name="Generate ID" width="90" x="648" y="340"> <parameter key="create_nominal_ids" value="false"/> <parameter key="offset" value="0"/> </operator> <operator activated="true" class="generate_id" compatibility="9.2.000-RC" expanded="true" height="82" name="Generate ID (2)" width="90" x="782" y="85"> <parameter key="create_nominal_ids" value="false"/> <parameter key="offset" value="0"/> </operator> <operator activated="true" class="concurrency:join" compatibility="9.2.000-RC" expanded="true" height="82" name="Join" width="90" x="849" y="238"> <parameter key="remove_double_attributes" value="true"/> <parameter key="join_type" value="inner"/> <parameter key="use_id_attribute_as_key" value="true"/> <list key="key_attributes"> <parameter key="time" value="target"/> </list> <parameter key="keep_both_join_attributes" value="false"/> </operator> <operator activated="true" class="sample" compatibility="9.2.000-RC" expanded="true" height="82" name="Sample" width="90" x="916" y="85"> <parameter key="sample" value="absolute"/> <parameter key="balance_data" value="false"/> <parameter key="sample_size" value="1000"/> <parameter key="sample_ratio" value="0.1"/> <parameter key="sample_probability" value="0.1"/> <list key="sample_size_per_class"/> <list key="sample_ratio_per_class"/> <list key="sample_probability_per_class"/> <parameter key="use_local_random_seed" value="false"/> <parameter key="local_random_seed" value="1992"/> </operator> <operator activated="true" class="sort" compatibility="9.2.000-RC" expanded="true" height="82" name="Sort" width="90" x="1050" y="85"> <parameter key="attribute_name" value="time"/> <parameter key="sorting_direction" value="increasing"/> </operator> <connect from_port="single" to_op="Execute Python" to_port="input 1"/> <connect from_op="Read CSV (2)" from_port="output" to_op="Execute Python" to_port="input 2"/> <connect from_op="Execute Python" from_port="output 1" to_op="Rename by Replacing" to_port="example set input"/> <connect from_op="Rename by Replacing" from_port="example set output" to_op="Loop Attributes" to_port="input 1"/> <connect from_op="Loop Attributes" from_port="output 1" to_op="Generate ID (2)" to_port="example set input"/> <connect from_op="Create ExampleSet" from_port="output" to_op="Generate ID" to_port="example set input"/> <connect from_op="Generate ID" from_port="example set output" to_op="Join" to_port="left"/> <connect from_op="Generate ID (2)" from_port="example set output" to_op="Join" to_port="right"/> <connect from_op="Join" from_port="join" to_op="Sample" to_port="example set input"/> <connect from_op="Sample" from_port="example set output" to_op="Sort" to_port="example set input"/> <connect from_op="Sort" from_port="example set output" to_port="output 1"/> <portSpacing port="source_single" spacing="0"/> <portSpacing port="sink_output 1" spacing="0"/> <portSpacing port="sink_output 2" spacing="0"/> </process> </operator> <operator activated="true" class="deeplearning:dl4j_timeseries_converter" compatibility="0.9.000" expanded="true" height="68" name="TimeSeries to Tensor" width="90" x="447" y="85"/> <operator activated="true" class="deeplearning:dl4j_tensor_sequential_neural_network" compatibility="0.9.000" expanded="true" height="103" name="Deep Learning (Tensor)" width="90" x="581" y="85"> <parameter key="loss_function" value="Multiclass Cross Entropy (Classification)"/> <parameter key="epochs" value="100"/> <parameter key="use_miniBatch" value="false"/> <parameter key="batch_size" value="32"/> <parameter key="updater" value="Adam"/> <parameter key="learning_rate" value="0.01"/> <parameter key="momentum" value="0.9"/> <parameter key="rho" value="0.95"/> <parameter key="epsilon" value="1.0E-6"/> <parameter key="beta1" value="0.9"/> <parameter key="beta2" value="0.999"/> <parameter key="RMSdecay" value="0.95"/> <parameter key="weight_initialization" value="Normal"/> <parameter key="bias_initialization" value="0.0"/> <parameter key="use_regularization" value="false"/> <parameter key="l1_strength" value="0.1"/> <parameter key="l2_strength" value="0.1"/> <parameter key="optimization_method" value="Stochastic Gradient Descent"/> <parameter key="backpropagation" value="Standard"/> <parameter key="backpropagation_length" value="50"/> <parameter key="infer_input_shape" value="true"/> <parameter key="network_type" value="Simple Neural Network"/> <parameter key="log_each_epoch" value="true"/> <parameter key="epochs_per_log" value="10"/> <parameter key="use_local_random_seed" value="false"/> <parameter key="local_random_seed" value="1992"/> <process expanded="true"> <operator activated="true" class="deeplearning:dl4j_lstm_layer" compatibility="0.9.000" expanded="true" height="68" name="Add LSTM Layer" origin="GENERATED_SAMPLE" width="90" x="313" y="136"> <parameter key="neurons" value="20"/> <parameter key="gate_activation" value="TanH"/> <parameter key="forget_gate_bias_initialization" value="1.0"/> <description align="center" color="transparent" colored="false" width="126">A long short term memory layer is used for keeping previous time-steps for current training decisions.</description> </operator> <operator activated="true" class="deeplearning:dl4j_dense_layer" compatibility="0.9.000" expanded="true" height="68" name="Add Fully-Connected Layer" origin="GENERATED_SAMPLE" width="90" x="581" y="136"> <parameter key="number_of_neurons" value="2"/> <parameter key="activation_function" value="Softmax"/> <parameter key="use_dropout" value="false"/> <parameter key="dropout_rate" value="0.25"/> <parameter key="overwrite_networks_weight_initialization" value="false"/> <parameter key="weight_initialization" value="Normal"/> <parameter key="overwrite_networks_bias_initialization" value="false"/> <parameter key="bias_initialization" value="0.0"/> <description align="center" color="transparent" colored="false" width="126">Using no activation function for this output layer, since a regression is performed.</description> </operator> <connect from_port="layerArchitecture" to_op="Add LSTM Layer" to_port="layerArchitecture"/> <connect from_op="Add LSTM Layer" from_port="layerArchitecture" to_op="Add Fully-Connected Layer" to_port="layerArchitecture"/> <connect from_op="Add Fully-Connected Layer" from_port="layerArchitecture" to_port="layerArchitecture"/> <portSpacing port="source_layerArchitecture" spacing="0"/> <portSpacing port="sink_layerArchitecture" spacing="0"/> </process> </operator> <connect from_op="Loop Files" from_port="output 1" to_op="Loop Collection" to_port="collection"/> <connect from_op="Loop Collection" from_port="output 1" to_op="TimeSeries to Tensor" to_port="collection"/> <connect from_op="TimeSeries to Tensor" from_port="tensor" to_op="Deep Learning (Tensor)" to_port="training set"/> <connect from_op="Deep Learning (Tensor)" from_port="model" to_port="result 1"/> <connect from_op="Deep Learning (Tensor)" from_port="history" to_port="result 2"/> <connect from_op="Deep Learning (Tensor)" from_port="tensor" to_port="result 3"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> <portSpacing port="sink_result 4" spacing="0"/> </process> </operator> </process>