🎉Community Raffle - Win $25

An exclusive raffle opportunity for active members like you! Complete your profile, answer questions and get your first accepted badge to enter the raffle.
Join and Win

"Algorithm in Cross Validation keep on processing"

varunm1User: "varunm1"
New Altair Community Member
Updated by Jocelyn
Hi,

I am trying to do cross-validation 5 fold, but the SVM and Logistic regression operators in CV keep on processing as shown in the figure below. Its been 10 hours and they are same. The dataset size is 316974 samples with 40 attributes. XML below. Is this due to dataset size? Generally, it needs to show some percentage of completion but it keeps on processing without change.





<?xml version="1.0" encoding="UTF-8"?><process version="9.1.000">
  <context>
    <input/>
    <output/>
    <macros/>
  </context>
  <operator activated="true" class="process" compatibility="9.1.000" expanded="true" name="Process">
    <parameter key="logverbosity" value="init"/>
    <parameter key="random_seed" value="2001"/>
    <parameter key="send_mail" value="never"/>
    <parameter key="notification_email" value=""/>
    <parameter key="process_duration_for_mail" value="30"/>
    <parameter key="encoding" value="SYSTEM"/>
    <process expanded="true">
      <operator activated="true" class="retrieve" compatibility="9.1.000" expanded="true" height="68" name="Retrieve Assistment_Data_Feature_Selection" width="90" x="45" y="136">
        <parameter key="repository_entry" value="../../data/AIED_New/Assistment_Data_Feature_Selection"/>
      </operator>
      <operator activated="true" class="select_attributes" compatibility="9.1.000" expanded="true" height="82" name="Select Attributes" width="90" x="246" y="136">
        <parameter key="attribute_filter_type" value="subset"/>
        <parameter key="attribute" value=""/>
        <parameter key="attributes" value="Ln|Ln-1|NumActions|RES_BORED|RES_CONFUSED|RES_FRUSTRATED|RES_GAMING|RES_OFFTASK|Skill_ID|attemptCount|correct|endsWithScaffolding|frIsHelpRequest|frIsHelpRequestScaffolding|frPast5HelpRequest|frPast5WrongCount|frPast8HelpRequest|frPast8WrongCount|frTotalSkillOpportunitiesScaffolding|hint|hintCount|hintTotal|manywrong|original|past8BottomOut|scaffold|sumRight|sumTimePerSkill|timeGreater10SecAndNextActionRight|timeSinceSkill|timeTaken|totalFrAttempted|totalFrPastWrongCount|totalFrPercentPastWrong|totalFrSkillOpportunities|totalFrSkillOpportunitiesByScaffolding|totalFrTimeOnSkill|totalTimeByPercentCorrectForskill"/>
        <parameter key="use_except_expression" value="false"/>
        <parameter key="value_type" value="attribute_value"/>
        <parameter key="use_value_type_exception" value="false"/>
        <parameter key="except_value_type" value="time"/>
        <parameter key="block_type" value="attribute_block"/>
        <parameter key="use_block_type_exception" value="false"/>
        <parameter key="except_block_type" value="value_matrix_row_start"/>
        <parameter key="invert_selection" value="false"/>
        <parameter key="include_special_attributes" value="false"/>
      </operator>
      <operator activated="true" class="multiply" compatibility="9.1.000" expanded="true" height="82" name="Multiply" width="90" x="380" y="34"/>
      <operator activated="true" class="concurrency:cross_validation" compatibility="9.1.000" expanded="true" height="166" name="Cross Validation" width="90" x="581" y="136">
        <parameter key="split_on_batch_attribute" value="false"/>
        <parameter key="leave_one_out" value="false"/>
        <parameter key="number_of_folds" value="5"/>
        <parameter key="sampling_type" value="automatic"/>
        <parameter key="use_local_random_seed" value="true"/>
        <parameter key="local_random_seed" value="1992"/>
        <parameter key="enable_parallel_execution" value="true"/>
        <process expanded="true">
          <operator activated="true" class="support_vector_machine" compatibility="9.1.000" expanded="true" height="124" name="SVM" width="90" x="112" y="85">
            <parameter key="kernel_type" value="dot"/>
            <parameter key="kernel_gamma" value="1.0"/>
            <parameter key="kernel_sigma1" value="1.0"/>
            <parameter key="kernel_sigma2" value="0.0"/>
            <parameter key="kernel_sigma3" value="2.0"/>
            <parameter key="kernel_shift" value="1.0"/>
            <parameter key="kernel_degree" value="2.0"/>
            <parameter key="kernel_a" value="1.0"/>
            <parameter key="kernel_b" value="0.0"/>
            <parameter key="kernel_cache" value="200"/>
            <parameter key="C" value="0.0"/>
            <parameter key="convergence_epsilon" value="0.001"/>
            <parameter key="max_iterations" value="100000"/>
            <parameter key="scale" value="true"/>
            <parameter key="calculate_weights" value="true"/>
            <parameter key="return_optimization_performance" value="true"/>
            <parameter key="L_pos" value="1.0"/>
            <parameter key="L_neg" value="1.0"/>
            <parameter key="epsilon" value="0.0"/>
            <parameter key="epsilon_plus" value="0.0"/>
            <parameter key="epsilon_minus" value="0.0"/>
            <parameter key="balance_cost" value="false"/>
            <parameter key="quadratic_loss_pos" value="false"/>
            <parameter key="quadratic_loss_neg" value="false"/>
            <parameter key="estimate_performance" value="false"/>
          </operator>
          <connect from_port="training set" to_op="SVM" to_port="training set"/>
          <connect from_op="SVM" from_port="model" to_port="model"/>
          <portSpacing port="source_training set" spacing="0"/>
          <portSpacing port="sink_model" spacing="0"/>
          <portSpacing port="sink_through 1" spacing="0"/>
        </process>
        <process expanded="true">
          <operator activated="true" class="apply_model" compatibility="9.1.000" expanded="true" height="82" name="Apply Model" width="90" x="45" y="34">
            <list key="application_parameters"/>
            <parameter key="create_view" value="false"/>
          </operator>
          <operator activated="true" class="multiply" compatibility="9.1.000" expanded="true" height="103" name="Multiply (2)" width="90" x="45" y="136"/>
          <operator activated="true" class="performance" compatibility="9.1.000" expanded="true" height="82" name="Performance" width="90" x="179" y="238">
            <parameter key="use_example_weights" value="true"/>
          </operator>
          <operator activated="true" class="performance_classification" compatibility="9.1.000" expanded="true" height="82" name="Performance (2)" width="90" x="246" y="34">
            <parameter key="main_criterion" value="first"/>
            <parameter key="accuracy" value="true"/>
            <parameter key="classification_error" value="false"/>
            <parameter key="kappa" value="true"/>
            <parameter key="weighted_mean_recall" value="false"/>
            <parameter key="weighted_mean_precision" value="false"/>
            <parameter key="spearman_rho" value="false"/>
            <parameter key="kendall_tau" value="false"/>
            <parameter key="absolute_error" value="false"/>
            <parameter key="relative_error" value="false"/>
            <parameter key="relative_error_lenient" value="false"/>
            <parameter key="relative_error_strict" value="false"/>
            <parameter key="normalized_absolute_error" value="false"/>
            <parameter key="root_mean_squared_error" value="true"/>
            <parameter key="root_relative_squared_error" value="false"/>
            <parameter key="squared_error" value="false"/>
            <parameter key="correlation" value="false"/>
            <parameter key="squared_correlation" value="false"/>
            <parameter key="cross-entropy" value="false"/>
            <parameter key="margin" value="false"/>
            <parameter key="soft_margin_loss" value="false"/>
            <parameter key="logistic_loss" value="false"/>
            <parameter key="skip_undefined_labels" value="true"/>
            <parameter key="use_example_weights" value="true"/>
            <list key="class_weights"/>
          </operator>
          <connect from_port="model" to_op="Apply Model" to_port="model"/>
          <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
          <connect from_op="Apply Model" from_port="labelled data" to_op="Multiply (2)" to_port="input"/>
          <connect from_op="Multiply (2)" from_port="output 1" to_op="Performance" to_port="labelled data"/>
          <connect from_op="Multiply (2)" from_port="output 2" to_op="Performance (2)" to_port="labelled data"/>
          <connect from_op="Performance" from_port="performance" to_port="performance 2"/>
          <connect from_op="Performance (2)" from_port="performance" to_port="performance 1"/>
          <portSpacing port="source_model" spacing="0"/>
          <portSpacing port="source_test set" spacing="0"/>
          <portSpacing port="source_through 1" spacing="0"/>
          <portSpacing port="sink_test set results" spacing="0"/>
          <portSpacing port="sink_performance 1" spacing="0"/>
          <portSpacing port="sink_performance 2" spacing="0"/>
          <portSpacing port="sink_performance 3" spacing="0"/>
        </process>
      </operator>
      <connect from_op="Retrieve Assistment_Data_Feature_Selection" from_port="output" to_op="Select Attributes" to_port="example set input"/>
      <connect from_op="Select Attributes" from_port="example set output" to_op="Multiply" to_port="input"/>
      <connect from_op="Multiply" from_port="output 1" to_op="Cross Validation" to_port="example set"/>
      <connect from_op="Cross Validation" from_port="performance 1" to_port="result 1"/>
      <connect from_op="Cross Validation" from_port="performance 2" to_port="result 2"/>
      <portSpacing port="source_input 1" spacing="0"/>
      <portSpacing port="sink_result 1" spacing="0"/>
      <portSpacing port="sink_result 2" spacing="0"/>
      <portSpacing port="sink_result 3" spacing="0"/>
    </process>
  </operator>
</process>

Thanks,
Varun

Find more posts tagged with

Sort by:
1 - 1 of 11
    User: "MartinLiebig"
    Altair Employee
    Accepted Answer
    300k is simply a lot for an SVM. SVMs scale well in #attributes, but not so well in #samples.

    Sadly there is one librarly which does not offer a kill-switch. If i remember correctly RM cannot kill it from the outside and you would need to kill the java process.

    BR,
    Martin