A program to recognize and reward our most engaged community members
<?xml version="1.0" encoding="UTF-8"?><process version="9.1.000-BETA2"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="9.1.000-BETA2" expanded="true" name="Process"> <parameter key="logverbosity" value="init"/> <parameter key="random_seed" value="120"/> <parameter key="send_mail" value="never"/> <parameter key="notification_email" value=""/> <parameter key="process_duration_for_mail" value="30"/> <parameter key="encoding" value="SYSTEM"/> <process expanded="true"> <operator activated="true" class="retrieve" compatibility="9.1.000-BETA2" expanded="true" height="68" name="Retrieve Polynomial" width="90" x="112" y="85"> <parameter key="repository_entry" value="//Samples/data/Polynomial"/> </operator> <operator activated="true" class="concurrency:cross_validation" compatibility="8.2.000" expanded="true" height="145" name="Validation" width="90" x="380" y="34"> <parameter key="split_on_batch_attribute" value="false"/> <parameter key="leave_one_out" value="false"/> <parameter key="number_of_folds" value="10"/> <parameter key="sampling_type" value="shuffled sampling"/> <parameter key="use_local_random_seed" value="false"/> <parameter key="local_random_seed" value="1992"/> <parameter key="enable_parallel_execution" value="true"/> <process expanded="true"> <operator activated="true" class="concurrency:parallel_decision_tree" compatibility="9.1.000-BETA2" expanded="true" height="103" name="Decision Tree" width="90" x="179" y="34"> <parameter key="criterion" value="least_square"/> <parameter key="maximal_depth" value="10"/> <parameter key="apply_pruning" value="true"/> <parameter key="confidence" value="0.1"/> <parameter key="apply_prepruning" value="true"/> <parameter key="minimal_gain" value="0.01"/> <parameter key="minimal_leaf_size" value="2"/> <parameter key="minimal_size_for_split" value="4"/> <parameter key="number_of_prepruning_alternatives" value="3"/> </operator> <connect from_port="training set" to_op="Decision Tree" to_port="training set"/> <connect from_op="Decision Tree" from_port="model" to_port="model"/> <portSpacing port="source_training set" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> <description align="left" color="green" colored="true" height="113" resized="true" width="284" x="33" y="148">Builds a model on the current training data set (90 % of the data by default, 10 times).<br><br>Make sure that you only put numerical attributes into a linear regression!</description> </process> <process expanded="true"> <operator activated="true" class="apply_model" compatibility="9.1.000-BETA2" expanded="true" height="82" name="Apply Model" width="90" x="45" y="34"> <list key="application_parameters"/> <parameter key="create_view" value="false"/> </operator> <operator activated="true" class="performance" compatibility="9.1.000-BETA2" expanded="true" height="82" name="Performance" width="90" x="179" y="34"> <parameter key="use_example_weights" value="true"/> </operator> <connect from_port="model" to_op="Apply Model" to_port="model"/> <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/> <connect from_op="Performance" from_port="performance" to_port="performance 1"/> <connect from_op="Performance" from_port="example set" to_port="test set results"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_test set results" spacing="0"/> <portSpacing port="sink_performance 1" spacing="0"/> <portSpacing port="sink_performance 2" spacing="0"/> <description align="left" color="blue" colored="true" height="107" resized="true" width="333" x="28" y="139">Applies the model built from the training data set on the current test set (10 % by default).<br/>The Performance operator calculates performance indicators and sends them to the operator result.</description> </process> <description align="center" color="transparent" colored="false" width="126">A cross validation including a linear regression.</description> </operator> <connect from_op="Retrieve Polynomial" from_port="output" to_op="Validation" to_port="example set"/> <connect from_op="Validation" from_port="model" to_port="result 1"/> <connect from_op="Validation" from_port="test result set" to_port="result 2"/> <connect from_op="Validation" from_port="performance 1" to_port="result 3"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> <portSpacing port="sink_result 4" spacing="0"/> </process> </operator> </process>
segment = global: 0.018 {count=4} segment = local | Sector = AD: 0.016 {count=3} | Sector = ES: 0.011 {count=2} segment = med: 0.020 {count=10}