I am creating a model to predict customer churn ('Y', 'N') and by using Gradient Boosted Trees I was able to predict with an 87% if the customer has churn status 'Y' and 68% if the customer has churn status 'N' according to the Cross Validation process. The thing is, when I add unlabeled data to run predictions on, the actual predictions are not accurate at all. If the model says it can predict with an 87% accuracy if a customer is a churned customer, shouldn't the actual predictions be 87%? Is there a way for me to choose what I want the prediction to focus on with the unlabeled data so that I can get a closer prediction to the cross validation score? (In this case churn = 'Y')
<?xml version="1.0" encoding="UTF-8"?><process version="8.2.000">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="8.2.000" expanded="true" name="Process">
<process expanded="true">
<operator activated="true" class="retrieve" compatibility="8.2.000" expanded="true" height="68" name="Retrieve churnmodel1" width="90" x="45" y="34">
<parameter key="repository_entry" value="//Local Repository/churnmodel1"/>
</operator>
<operator activated="true" class="concurrency:cross_validation" compatibility="8.2.000" expanded="true" height="145" name="Cross Validation" width="90" x="179" y="34">
<process expanded="true">
<operator activated="true" class="h2o:gradient_boosted_trees" compatibility="8.2.000" expanded="true" height="103" name="Gradient Boosted Trees" width="90" x="112" y="34">
<list key="expert_parameters"/>
</operator>
<connect from_port="training set" to_op="Gradient Boosted Trees" to_port="training set"/>
<connect from_op="Gradient Boosted Trees" from_port="model" to_port="model"/>
<portSpacing port="source_training set" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true">
<operator activated="true" class="apply_model" compatibility="8.2.000" expanded="true" height="82" name="Apply Model" width="90" x="45" y="34">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance" compatibility="8.2.000" expanded="true" height="82" name="Performance" width="90" x="179" y="34"/>
<connect from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance" from_port="performance" to_port="performance 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_test set results" spacing="0"/>
<portSpacing port="sink_performance 1" spacing="0"/>
<portSpacing port="sink_performance 2" spacing="0"/>
</process>
</operator>
<connect from_op="Retrieve churnmodel1" from_port="output" to_op="Cross Validation" to_port="example set"/>
<connect from_op="Cross Validation" from_port="model" to_port="result 1"/>
<connect from_op="Cross Validation" from_port="test result set" to_port="result 3"/>
<connect from_op="Cross Validation" from_port="performance 1" to_port="result 2"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
<portSpacing port="sink_result 4" spacing="0"/>
<background height="232" location="//Samples/Tutorials/Modeling, Scoring, and Validation/04/tutorial4" width="1502" x="26" y="47"/>
</process>
</operator>
</process>