Good morning,
I used the "Decision Tree" operator to create a model with a training dataset.
With parameter "criterion" to "gini_index" no decision tree is created on the results : The differents attributes are not taken into account.
When the parameter "criterion " is "accuracy", or "gain-ratio" or "information_gain", the decision trees are good created.
My training dataset and scoreset are in attached files
Here my process in xml :
<?xml version="1.0" encoding="UTF-8"?><process version="7.6.001">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="7.6.001" expanded="true" name="Process">
<parameter key="logverbosity" value="init"/>
<parameter key="random_seed" value="2001"/>
<parameter key="send_mail" value="never"/>
<parameter key="notification_email" value=""/>
<parameter key="process_duration_for_mail" value="30"/>
<parameter key="encoding" value="SYSTEM"/>
<process expanded="true">
<operator activated="true" class="retrieve" compatibility="7.6.001" expanded="true" height="68" name="Training" width="90" x="112" y="34">
<parameter key="repository_entry" value="//DataMiningForTheMasses/data/Chapter10DataSet_Training"/>
</operator>
<operator activated="true" class="set_role" compatibility="7.6.001" expanded="true" height="82" name="Set Role" width="90" x="246" y="34">
<parameter key="attribute_name" value="User_ID"/>
<parameter key="target_role" value="id"/>
<list key="set_additional_roles"/>
</operator>
<operator activated="true" class="set_role" compatibility="7.6.001" expanded="true" height="82" name="Set Role (3)" width="90" x="380" y="34">
<parameter key="attribute_name" value="eReader_Adoption"/>
<parameter key="target_role" value="label"/>
<list key="set_additional_roles"/>
</operator>
<operator activated="true" class="concurrency:parallel_decision_tree" compatibility="7.6.001" expanded="true" height="82" name="Decision Tree" width="90" x="514" y="34">
<parameter key="criterion" value="gini_index"/>
<parameter key="maximal_depth" value="20"/>
<parameter key="apply_pruning" value="true"/>
<parameter key="confidence" value="0.25"/>
<parameter key="apply_prepruning" value="true"/>
<parameter key="minimal_gain" value="0.1"/>
<parameter key="minimal_leaf_size" value="2"/>
<parameter key="minimal_size_for_split" value="4"/>
<parameter key="number_of_prepruning_alternatives" value="3"/>
</operator>
<operator activated="true" class="retrieve" compatibility="7.6.001" expanded="true" height="68" name="Scoring" width="90" x="112" y="238">
<parameter key="repository_entry" value="//DataMiningForTheMasses/data/Chapter10DataSet_Scoring"/>
</operator>
<operator activated="true" class="set_role" compatibility="7.6.001" expanded="true" height="82" name="Set Role (2)" width="90" x="313" y="238">
<parameter key="attribute_name" value="User_ID"/>
<parameter key="target_role" value="id"/>
<list key="set_additional_roles"/>
</operator>
<operator activated="true" class="apply_model" compatibility="7.6.001" expanded="true" height="82" name="Apply Model" width="90" x="715" y="136">
<list key="application_parameters"/>
<parameter key="create_view" value="false"/>
</operator>
<connect from_op="Training" from_port="output" to_op="Set Role" to_port="example set input"/>
<connect from_op="Set Role" from_port="example set output" to_op="Set Role (3)" to_port="example set input"/>
<connect from_op="Set Role (3)" from_port="example set output" to_op="Decision Tree" to_port="training set"/>
<connect from_op="Decision Tree" from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_op="Scoring" from_port="output" to_op="Set Role (2)" to_port="example set input"/>
<connect from_op="Set Role (2)" from_port="example set output" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_port="result 1"/>
<connect from_op="Apply Model" from_port="model" to_port="result 2"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
</process>
</operator>
</process>
Is it a bug ?
Can you help me ?
Thank you
Lionel