Hi everyone,
for an university project, I need to predict the class-value of different data sets that would be best bescribed as time series.
I have exactly one input value per each prediction task with an timestamp as the index. For my example, let's assume the time stamp is 0 - 100 seconds and the input value is the electric current of a machine.
I want to classify based on the change of the electrical current over time. For example, class 1 is just a regular process with the current around 50A, class 2 has a general higher current of about 60A, class 3 has peaks between the seconds 10-15 and so on.
I am using a Neural Net (MLP-BP). However when I load the data and train the model, my MLP has the same number of input neurons as I have unique values for each process (e.g. 100 input neurons - when I have 100 timestamps).
This doesn't seem right to me but on the other hand, it's sort of logical. In the future, I want to classify time series with much larger individual values for each process and I am afraid, that I will get problems when I suddenly have ~3000 input neurons.
Can anyone help me with this problem?
Down below is my process - i believe it's very simple and hope it's not full of mistakes.
Thanks in advance.
Moritz
<?xml version="1.0" encoding="UTF-8"?><process version="7.6.000">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="7.6.000" expanded="true" name="Process">
<process expanded="true">
<operator activated="true" class="retrieve" compatibility="7.6.000" expanded="true" height="68" name="Retrieve 5V_4D_Training (2)" width="90" x="45" y="34">
<parameter key="repository_entry" value="../5V_4D_Training"/>
</operator>
<operator activated="true" class="neural_net" compatibility="7.6.000" expanded="true" height="82" name="Neural Net" width="90" x="179" y="34">
<list key="hidden_layers"/>
</operator>
<operator activated="true" class="retrieve" compatibility="7.6.000" expanded="true" height="68" name="Retrieve 8V_1D_unbekannt" width="90" x="45" y="136">
<parameter key="repository_entry" value="../8V_1D_unbekannt"/>
</operator>
<operator activated="true" class="apply_model" compatibility="7.6.000" expanded="true" height="82" name="Apply Model" width="90" x="447" y="34">
<list key="application_parameters"/>
</operator>
<connect from_op="Retrieve 5V_4D_Training (2)" from_port="output" to_op="Neural Net" to_port="training set"/>
<connect from_op="Neural Net" from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_op="Retrieve 8V_1D_unbekannt" from_port="output" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_port="result 1"/>
<connect from_op="Apply Model" from_port="model" to_port="result 2"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
</process>
</operator>
</process>