Hello,
Any help in this matter would be really appreciated.
I am using GBT operator to train my model on a customer churn example set. I received approx. 80 % accuracy with GBT Model. Now my issue is to how do I related this GBT model output with business processes.
How should I communicate the GBT results with business folks to understand why specific customer is churn and what variables contributed to Terminated status instead of Active customer status.
Another question I have in mind is, How do I calculate the threshold variable limits that make customers to change their mind? That way we can watchful on certain metrics to prevent churn.
Here is the result from GBT model
Model Metrics Type: Binomial
Description: N/A
model id: rm-h2o-model-gradient_boosted_trees-422159
frame id: rm-h2o-frame-gradient_boosted_trees-324798
MSE: 0.10739042
R^2: 0.5584855
AUC: 0.9389837
logloss: 0.35373378
CM: Confusion Matrix (vertical: actual; across: predicted):
Active Terminated Error Rate
Active 590 139 0.1907 = 139 / 729
Terminated 53 470 0.1013 = 53 / 523
Totals 643 609 0.1534 = 192 / 1,252
Gains/Lift Table (Avg response rate: 41.77 %):
Group Cumulative Data Fraction Lower Threshold Lift Cumulative Lift Response Rate Cumulative Response Rate Capture Rate Cumulative Capture Rate Gain Cumulative Gain
|
1 0.01038339 0.926587 2.393881 2.393881 1.000000 1.000000 0.024857 0.024857 139.388145 139.388145
|
2 0.02076677 0.926248 2.393881 2.393881 1.000000 1.000000 0.024857 0.049713 139.388145 139.388145
|
3 0.03035144 0.926021 2.393881 2.393881 1.000000 1.000000 0.022945 0.072658 139.388145 139.388145
|
4 0.04073482 0.925124 2.393881 2.393881 1.000000 1.000000 0.024857 0.097514 139.388145 139.388145
|
5 0.05111821 0.924748 2.393881 2.393881 1.000000 1.000000 0.024857 0.122371 139.388145 139.388145
|
6 0.10063898 0.913532 2.393881 2.393881 1.000000 1.000000 0.118547 0.240918 139.388145 139.388145
|
7 0.15015974 0.872454 2.393881 2.393881 1.000000 1.000000 0.118547 0.359465 139.388145 139.388145
|
8 0.20047923 0.754298 2.355883 2.384344 0.984127 0.996016 0.118547 0.478011 135.588333 138.434408
|
9 0.30031949 0.570023 1.953407 2.241081 0.816000 0.936170 0.195029 0.673040 95.340727 124.108051
|
10 0.40015974 0.429297 1.378876 2.025960 0.576000 0.846307 0.137667 0.810707 37.887572 102.595955
|
11 0.50000000 0.326709 0.957553 1.812620 0.400000 0.757188 0.095602 0.906310 -4.244742 81.261950
|
12 0.59984026 0.267012 0.459625 1.587421 0.192000 0.663116 0.045889 0.952199 -54.037476 58.742072
|
13 0.69968051 0.227460 0.344719 1.410095 0.144000 0.589041 0.034417 0.986616 -65.528107 41.009455
|
14 0.80031949 0.103437 0.132993 1.249501 0.055556 0.521956 0.013384 1.000000 -86.700659 24.950100
|
15 0.90095847 0.068919 0.000000 1.109929 0.000000 0.463652 0.000000 1.000000 -100.000000 10.992908
|
16 1.00000000 0.057902 0.000000 1.000000 0.000000 0.417732 0.000000 1.000000 -100.000000 0.000000
|
Variable
|
Relative Importance
|
Scaled Importance
|
Percentage
|
Field1
|
445.525879
|
1
|
0.49061
|
Field2
|
158.352005
|
0.355427
|
0.174376
|
Field3
|
93.245522
|
0.209293
|
0.102681
|
Field4
|
51.406567
|
0.115384
|
0.056609
|
Field5
|
34.961025
|
0.078471
|
0.038499
|
Field6
|
26.576853
|
0.059653
|
0.029266
|
Field7
|
19.5725
|
0.043931
|
0.021553
|
Field8
|
19.506002
|
0.043782
|
0.02148
|
Field9
|
19.407133
|
0.04356
|
0.021371
|
Field10
|
13.182694
|
0.029589
|
0.014517
|
Field11
|
11.111937
|
0.024941
|
0.012236
|
Field12
|
4.461669
|
0.010014
|
0.004913
|
Field13
|
3.955152
|
0.008877
|
0.004355
|
Field14
|
3.564302
|
0.008
|
0.003925
|
Field15
|
3.276087
|
0.007353
|
0.003608
|
Field16
|
0
|
0
|
0
|
Thank You