🎉Community Raffle - Win $25

An exclusive raffle opportunity for active members like you! Complete your profile, answer questions and get your first accepted badge to enter the raffle.
Join and Win

How to predict using support vector machine

User: "fatinharun94"
New Altair Community Member
Updated by Jocelyn

Hi. I am new here. I have dengue outbreak and 9 attributes of weather data. I am working on a project to predict dengue outbreak based on the weather data by using support vector machine. But I don't know the step to make this happen. I am very grateful if you can help me. Thank you.

Find more posts tagged with

Sort by:
1 - 1 of 11
    User: "Thomas_Ott"
    New Altair Community Member

    The first question I have is do you have a label for your data set. My guess is that it would be "outbreak" and "no outbreak."  

     

    The bigger question is if there is a time series componment to all this, for example is a series of days with temperature over 70F somehow correlated with an outbreak?

    <?xml version="1.0" encoding="UTF-8"?><process version="7.4.000">
    <context>
    <input/>
    <output/>
    <macros/>
    </context>
    <operator activated="true" class="process" compatibility="7.4.000" expanded="true" name="Process">
    <process expanded="true">
    <operator activated="true" class="generate_data" compatibility="7.4.000" expanded="true" height="68" name="Generate Data" width="90" x="45" y="34">
    <parameter key="target_function" value="random classification"/>
    <parameter key="number_of_attributes" value="9"/>
    <description align="center" color="transparent" colored="false" width="126">Type your comment</description>
    </operator>
    <operator activated="true" class="concurrency:cross_validation" compatibility="7.4.000" expanded="true" height="145" name="Validation" width="90" x="246" y="34">
    <parameter key="sampling_type" value="stratified sampling"/>
    <process expanded="true">
    <operator activated="true" class="support_vector_machine" compatibility="7.4.000" expanded="true" height="124" name="SVM" width="90" x="204" y="34">
    <parameter key="kernel_type" value="radial"/>
    <parameter key="kernel_gamma" value="0.001"/>
    <parameter key="C" value="1000.0"/>
    </operator>
    <connect from_port="training set" to_op="SVM" to_port="training set"/>
    <connect from_op="SVM" from_port="model" to_port="model"/>
    <portSpacing port="source_training set" spacing="0"/>
    <portSpacing port="sink_model" spacing="0"/>
    <portSpacing port="sink_through 1" spacing="0"/>
    <description align="left" color="green" colored="true" height="80" resized="true" width="248" x="140" y="215">In the training phase, a model is built on the current training data set. (90 % of data by default, 10 times)</description>
    </process>
    <process expanded="true">
    <operator activated="true" class="apply_model" compatibility="7.4.000" expanded="true" height="82" name="Apply Model" width="90" x="45" y="34">
    <list key="application_parameters"/>
    </operator>
    <operator activated="true" class="performance" compatibility="7.4.000" expanded="true" height="82" name="Performance" width="90" x="179" y="34"/>
    <connect from_port="model" to_op="Apply Model" to_port="model"/>
    <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
    <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
    <connect from_op="Performance" from_port="performance" to_port="performance 1"/>
    <connect from_op="Performance" from_port="example set" to_port="test set results"/>
    <portSpacing port="source_model" spacing="0"/>
    <portSpacing port="source_test set" spacing="0"/>
    <portSpacing port="source_through 1" spacing="0"/>
    <portSpacing port="sink_test set results" spacing="0"/>
    <portSpacing port="sink_performance 1" spacing="0"/>
    <portSpacing port="sink_performance 2" spacing="0"/>
    <description align="left" color="blue" colored="true" height="103" resized="true" width="315" x="38" y="137">The model created in the Training step is applied to the current test set (10 %).&lt;br/&gt;The performance is evaluated and sent to the operator results.</description>
    </process>
    <description align="center" color="transparent" colored="false" width="126">A cross-validation evaluating a SVM model.</description>
    </operator>
    <connect from_op="Generate Data" from_port="output" to_op="Validation" to_port="example set"/>
    <connect from_op="Validation" from_port="performance 1" to_port="result 1"/>
    <portSpacing port="source_input 1" spacing="0"/>
    <portSpacing port="sink_result 1" spacing="0"/>
    <portSpacing port="sink_result 2" spacing="0"/>
    </process>
    </operator>
    </process>