Weka Random forest constantly better than Random Forest Rapidminer
hi,
I teste W-RAndom Forest and Random Forest from Rapidminer on the same dataset, for W-RF, I got around 89%, whereas for Random Forest I got only 76%, why is that? I thought the Algorithm / Method is the same? Are the implementations so entirely different that I get such a performance discrepancy?
Answers
-
Are you comparing it with the same splitting criteron? This post says that W-RF uses information criteron to split: http://stackoverflow.com/questions/30150970/what-splitting-criterion-does-random-tree-in-weka-3-7-11-use-for-numerical-attri
When I do that, the results of the attached Iris data set works the same.
<?xml version="1.0" encoding="UTF-8"?><process version="7.4.000">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="7.4.000" expanded="true" name="Process">
<process expanded="true">
<operator activated="true" class="retrieve" compatibility="7.4.000" expanded="true" height="68" name="Retrieve Iris" width="90" x="45" y="187">
<parameter key="repository_entry" value="//Samples/data/Iris"/>
</operator>
<operator activated="true" class="multiply" compatibility="7.4.000" expanded="true" height="103" name="Multiply" width="90" x="179" y="187"/>
<operator activated="true" class="concurrency:cross_validation" compatibility="7.4.000" expanded="true" height="145" name="Validation (2)" width="90" x="313" y="238">
<parameter key="sampling_type" value="stratified sampling"/>
<process expanded="true">
<operator activated="true" class="weka:W-RandomForest" compatibility="7.3.000" expanded="true" height="82" name="W-RandomForest" width="90" x="112" y="34">
<parameter key="depth" value="20"/>
</operator>
<connect from_port="training set" to_op="W-RandomForest" to_port="training set"/>
<connect from_op="W-RandomForest" from_port="model" to_port="model"/>
<portSpacing port="source_training set" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true">
<operator activated="true" class="apply_model" compatibility="7.4.000" expanded="true" height="82" name="Apply Model (2)" width="90" x="45" y="34">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance" compatibility="7.4.000" expanded="true" height="82" name="Performance (2)" width="90" x="179" y="34"/>
<connect from_port="model" to_op="Apply Model (2)" to_port="model"/>
<connect from_port="test set" to_op="Apply Model (2)" to_port="unlabelled data"/>
<connect from_op="Apply Model (2)" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/>
<connect from_op="Performance (2)" from_port="performance" to_port="performance 1"/>
<connect from_op="Performance (2)" from_port="example set" to_port="test set results"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_test set results" spacing="0"/>
<portSpacing port="sink_performance 1" spacing="0"/>
<portSpacing port="sink_performance 2" spacing="0"/>
<description align="left" color="blue" colored="true" height="103" resized="false" width="315" x="38" y="137">The model created in the Training step is applied to the current test set (10 %).<br/>The performance is evaluated and sent to the operator results.</description>
</process>
</operator>
<operator activated="true" class="concurrency:cross_validation" compatibility="7.4.000" expanded="true" height="145" name="Validation" width="90" x="313" y="34">
<parameter key="sampling_type" value="stratified sampling"/>
<process expanded="true">
<operator activated="true" class="concurrency:parallel_random_forest" compatibility="7.4.000" expanded="true" height="82" name="Random Forest" width="90" x="179" y="34">
<parameter key="criterion" value="information_gain"/>
</operator>
<connect from_port="training set" to_op="Random Forest" to_port="training set"/>
<connect from_op="Random Forest" from_port="model" to_port="model"/>
<portSpacing port="source_training set" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true">
<operator activated="true" class="apply_model" compatibility="7.4.000" expanded="true" height="82" name="Apply Model" width="90" x="45" y="34">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance" compatibility="7.4.000" expanded="true" height="82" name="Performance" width="90" x="179" y="34"/>
<connect from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance" from_port="performance" to_port="performance 1"/>
<connect from_op="Performance" from_port="example set" to_port="test set results"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_test set results" spacing="0"/>
<portSpacing port="sink_performance 1" spacing="0"/>
<portSpacing port="sink_performance 2" spacing="0"/>
<description align="left" color="blue" colored="true" height="103" resized="true" width="315" x="38" y="137">The model created in the Training step is applied to the current test set (10 %).<br/>The performance is evaluated and sent to the operator results.</description>
</process>
</operator>
<connect from_op="Retrieve Iris" from_port="output" to_op="Multiply" to_port="input"/>
<connect from_op="Multiply" from_port="output 1" to_op="Validation" to_port="example set"/>
<connect from_op="Multiply" from_port="output 2" to_op="Validation (2)" to_port="example set"/>
<connect from_op="Validation (2)" from_port="performance 1" to_port="result 2"/>
<connect from_op="Validation" from_port="performance 1" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
</process>
</operator>
</process>0 -
that might be the problem, I used gain ratio I will try out information gain
EDIT: with information gain I also got around 77%-... but my dataset is far harder than iris data...
1 -
is there a solution found to that now?
I think it is rather the Random forest implementation from Rapidminer that causes the results rather than any parameter settings...
I mean its a quite big difference, someone should check that...
0