Sensitivity Analysis for Predictive Model

User: "jing_ma"
New Altair Community Member
Updated by Jocelyn

I have a question regarding sensitivity analysis for the resulted predictive model. For example, after data mining, I built a model from Naive Bayes. Is there any way readily in Rapid Miner to give the sensitivity results of parameters in the model from Bayes? Thanks so much!

Find more posts tagged with

Sort by:
1 - 1 of 11
    User: "Thomas_Ott"
    New Altair Community Member

    Of course you can do that in RapidMiner. My colleagu

    @mschmitz designed a few processes that help you get the sensitivity of variables.

     

    Here's one way. 

    <?xml version="1.0" encoding="UTF-8"?><process version="7.4.000">
    <context>
    <input/>
    <output/>
    <macros/>
    </context>
    <operator activated="true" class="process" compatibility="6.0.002" expanded="true" name="Process">
    <parameter key="encoding" value="SYSTEM"/>
    <process expanded="true">
    <operator activated="true" class="retrieve" compatibility="7.4.000" expanded="true" height="68" name="Retrieve" width="90" x="45" y="30">
    <parameter key="repository_entry" value="//Samples/data/Iris"/>
    </operator>
    <operator activated="true" class="optimize_selection_forward" compatibility="7.4.000" expanded="true" height="103" name="Forward Selection" width="90" x="180" y="30">
    <parameter key="maximal_number_of_attributes" value="33"/>
    <parameter key="speculative_rounds" value="55"/>
    <process expanded="true">
    <operator activated="true" class="x_validation" compatibility="7.4.000" expanded="true" height="112" name="InsV" width="90" x="45" y="30">
    <process expanded="true">
    <operator activated="true" class="weka:W-J48" compatibility="7.3.000" expanded="true" height="76" name="W-J48" width="90" x="45" y="30"/>
    <connect from_port="training" to_op="W-J48" to_port="training set"/>
    <connect from_op="W-J48" from_port="model" to_port="model"/>
    <portSpacing port="source_training" spacing="0"/>
    <portSpacing port="sink_model" spacing="0"/>
    <portSpacing port="sink_through 1" spacing="0"/>
    </process>
    <process expanded="true">
    <operator activated="true" class="apply_model" compatibility="7.1.001" expanded="true" height="76" name="InsA" width="90" x="45" y="30">
    <list key="application_parameters"/>
    </operator>
    <operator activated="true" class="performance_classification" compatibility="7.4.000" expanded="true" height="76" name="Performance (2)" width="90" x="179" y="30">
    <parameter key="accuracy" value="false"/>
    <parameter key="kappa" value="true"/>
    <list key="class_weights"/>
    </operator>
    <connect from_port="model" to_op="InsA" to_port="model"/>
    <connect from_port="test set" to_op="InsA" to_port="unlabelled data"/>
    <connect from_op="InsA" from_port="labelled data" to_op="Performance (2)" to_port="labelled data"/>
    <connect from_op="Performance (2)" from_port="performance" to_port="averagable 1"/>
    <portSpacing port="source_model" spacing="0"/>
    <portSpacing port="source_test set" spacing="0"/>
    <portSpacing port="source_through 1" spacing="0"/>
    <portSpacing port="sink_averagable 1" spacing="0"/>
    <portSpacing port="sink_averagable 2" spacing="0"/>
    </process>
    </operator>
    <operator activated="true" class="log" compatibility="7.4.000" expanded="true" height="76" name="Log" width="90" x="180" y="30">
    <list key="log">
    <parameter key="feature" value="operator.Forward Selection.value.feature_names"/>
    <parameter key="performance" value="operator.InsV.value.performance"/>
    <parameter key="deviation" value="operator.InsV.value.deviation"/>
    <parameter key="cpu time" value="operator.InsV.value.cpu-execution-time"/>
    <parameter key="apply count" value="operator.InsV.value.applycount"/>
    <parameter key="number of attributes" value="operator.Forward Selection.value.number of attributes"/>
    </list>
    </operator>
    <connect from_port="example set" to_op="InsV" to_port="training"/>
    <connect from_op="InsV" from_port="averagable 1" to_op="Log" to_port="through 1"/>
    <connect from_op="Log" from_port="through 1" to_port="performance"/>
    <portSpacing port="source_example set" spacing="0"/>
    <portSpacing port="sink_performance" spacing="0"/>
    </process>
    </operator>
    <operator activated="true" class="select_by_weights" compatibility="7.4.000" expanded="true" height="103" name="Select by Weights" width="90" x="313" y="30"/>
    <operator activated="true" class="x_validation" compatibility="7.4.000" expanded="true" height="124" name="Validation" width="90" x="447" y="34">
    <process expanded="true">
    <operator activated="true" class="weka:W-J48" compatibility="7.3.000" expanded="true" height="76" name="W-J48 (2)" width="90" x="45" y="30"/>
    <connect from_port="training" to_op="W-J48 (2)" to_port="training set"/>
    <connect from_op="W-J48 (2)" from_port="model" to_port="model"/>
    <portSpacing port="source_training" spacing="0"/>
    <portSpacing port="sink_model" spacing="0"/>
    <portSpacing port="sink_through 1" spacing="0"/>
    </process>
    <process expanded="true">
    <operator activated="true" class="apply_model" compatibility="7.1.001" expanded="true" height="76" name="Apply Model" width="90" x="45" y="30">
    <list key="application_parameters"/>
    </operator>
    <operator activated="true" class="performance_classification" compatibility="7.4.000" expanded="true" height="76" name="Performance (3)" width="90" x="179" y="165">
    <parameter key="accuracy" value="false"/>
    <parameter key="kappa" value="true"/>
    <list key="class_weights"/>
    </operator>
    <connect from_port="model" to_op="Apply Model" to_port="model"/>
    <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
    <connect from_op="Apply Model" from_port="labelled data" to_op="Performance (3)" to_port="labelled data"/>
    <connect from_op="Performance (3)" from_port="performance" to_port="averagable 1"/>
    <portSpacing port="source_model" spacing="0"/>
    <portSpacing port="source_test set" spacing="0"/>
    <portSpacing port="source_through 1" spacing="0"/>
    <portSpacing port="sink_averagable 1" spacing="0"/>
    <portSpacing port="sink_averagable 2" spacing="0"/>
    </process>
    </operator>
    <operator activated="true" class="log_to_data" compatibility="7.4.000" expanded="true" height="103" name="Log to Data" width="90" x="447" y="210">
    <parameter key="log_name" value="Log"/>
    </operator>
    <connect from_op="Retrieve" from_port="output" to_op="Forward Selection" to_port="example set"/>
    <connect from_op="Forward Selection" from_port="example set" to_op="Select by Weights" to_port="example set input"/>
    <connect from_op="Forward Selection" from_port="attribute weights" to_op="Select by Weights" to_port="weights"/>
    <connect from_op="Select by Weights" from_port="example set output" to_op="Validation" to_port="training"/>
    <connect from_op="Select by Weights" from_port="original" to_op="Log to Data" to_port="through 1"/>
    <connect from_op="Select by Weights" from_port="weights" to_port="result 3"/>
    <connect from_op="Validation" from_port="model" to_port="result 1"/>
    <connect from_op="Validation" from_port="averagable 1" to_port="result 2"/>
    <connect from_op="Log to Data" from_port="exampleSet" to_port="result 4"/>
    <portSpacing port="source_input 1" spacing="0"/>
    <portSpacing port="sink_result 1" spacing="0"/>
    <portSpacing port="sink_result 2" spacing="0"/>
    <portSpacing port="sink_result 3" spacing="0"/>
    <portSpacing port="sink_result 4" spacing="0"/>
    <portSpacing port="sink_result 5" spacing="0"/>
    </process>
    </operator>
    </process>