A program to recognize and reward our most engaged community members
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="6.4.000"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="6.0.002" expanded="true" name="Process"> <process expanded="true"> <operator activated="true" class="retrieve" compatibility="6.4.000" expanded="true" height="60" name="Retrieve Ripley-Set" width="90" x="45" y="30"> <parameter key="repository_entry" value="//Samples/data/Ripley-Set"/> </operator> <operator activated="true" class="nominal_to_binominal" compatibility="6.4.000" expanded="true" height="94" name="Nominal to Binominal" width="90" x="179" y="30"> <parameter key="attribute_filter_type" value="single"/> <parameter key="attribute" value="label"/> <parameter key="include_special_attributes" value="true"/> </operator> <operator activated="true" class="logistic_regression" compatibility="6.4.000" expanded="true" height="94" name="Logistic Regression" width="90" x="313" y="30"/> <operator activated="true" class="apply_model" compatibility="6.4.000" expanded="true" height="76" name="Apply Model" width="90" x="447" y="30"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_binominal_classification" compatibility="6.4.000" expanded="true" height="76" name="Original Performance" width="90" x="581" y="30"> <parameter key="main_criterion" value="kappa"/> <parameter key="classification_error" value="true"/> <parameter key="kappa" value="true"/> <parameter key="precision" value="true"/> <parameter key="recall" value="true"/> <parameter key="lift" value="true"/> <parameter key="fallout" value="true"/> <parameter key="f_measure" value="true"/> <parameter key="false_positive" value="true"/> <parameter key="false_negative" value="true"/> <parameter key="true_positive" value="true"/> <parameter key="true_negative" value="true"/> <parameter key="sensitivity" value="true"/> <parameter key="specificity" value="true"/> <parameter key="youden" value="true"/> <parameter key="positive_predictive_value" value="true"/> <parameter key="negative_predictive_value" value="true"/> <parameter key="skip_undefined_labels" value="false"/> <parameter key="use_example_weights" value="false"/> </operator> <operator activated="true" class="optimize_parameters_grid" compatibility="6.4.000" expanded="true" height="94" name="Optimize Parameters (Grid)" width="90" x="648" y="165"> <list key="parameters"> <parameter key="TryThreshold.threshold" value="[0.0;1.0;20;linear]"/> </list> <process expanded="true"> <operator activated="true" class="create_threshold" compatibility="6.4.000" expanded="true" height="60" name="TryThreshold" width="90" x="45" y="165"> <parameter key="threshold" value="1.0"/> <parameter key="first_class" value="1"/> <parameter key="second_class" value="0"/> </operator> <operator activated="true" class="apply_threshold" compatibility="6.4.000" expanded="true" height="76" name="Apply Threshold (2)" width="90" x="179" y="30"/> <operator activated="true" class="performance_binominal_classification" compatibility="6.4.000" expanded="true" height="76" name="Best Threshold" width="90" x="313" y="30"> <parameter key="main_criterion" value="kappa"/> <parameter key="classification_error" value="true"/> <parameter key="kappa" value="true"/> <parameter key="precision" value="true"/> <parameter key="recall" value="true"/> <parameter key="lift" value="true"/> <parameter key="fallout" value="true"/> <parameter key="f_measure" value="true"/> <parameter key="false_positive" value="true"/> <parameter key="false_negative" value="true"/> <parameter key="true_positive" value="true"/> <parameter key="true_negative" value="true"/> <parameter key="sensitivity" value="true"/> <parameter key="specificity" value="true"/> <parameter key="youden" value="true"/> <parameter key="positive_predictive_value" value="true"/> <parameter key="negative_predictive_value" value="true"/> <parameter key="skip_undefined_labels" value="false"/> <parameter key="use_example_weights" value="false"/> </operator> <operator activated="true" class="log" compatibility="6.4.000" expanded="true" height="76" name="Log" width="90" x="447" y="30"> <list key="log"> <parameter key="confidence_threshold" value="operator.TryThreshold.parameter.threshold"/> <parameter key="accuracy" value="operator.Best Threshold.value.accuracy"/> <parameter key="true_negative" value="operator.Best Threshold.value.true_negative"/> <parameter key="false_negative" value="operator.Best Threshold.value.false_negative"/> <parameter key="true_positive" value="operator.Best Threshold.value.true_positive"/> <parameter key="false_positive" value="operator.Best Threshold.value.false_positive"/> <parameter key="sensitivity" value="operator.Best Threshold.value.sensitivity"/> <parameter key="specificity" value="operator.Best Threshold.value.specificity"/> <parameter key="precision" value="operator.Best Threshold.value.precision"/> <parameter key="recall" value="operator.Best Threshold.value.recall"/> </list> </operator> <connect from_port="input 1" to_op="Apply Threshold (2)" to_port="example set"/> <connect from_op="TryThreshold" from_port="output" to_op="Apply Threshold (2)" to_port="threshold"/> <connect from_op="Apply Threshold (2)" from_port="example set" to_op="Best Threshold" to_port="labelled data"/> <connect from_op="Best Threshold" from_port="performance" to_op="Log" to_port="through 1"/> <connect from_op="Log" from_port="through 1" to_port="performance"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="source_input 2" spacing="0"/> <portSpacing port="sink_performance" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> </process> </operator> <operator activated="true" class="log_to_data" compatibility="6.4.000" expanded="true" height="94" name="Tested Threshold Table" width="90" x="782" y="120"/> <connect from_op="Retrieve Ripley-Set" from_port="output" to_op="Nominal to Binominal" to_port="example set input"/> <connect from_op="Nominal to Binominal" from_port="example set output" to_op="Logistic Regression" to_port="training set"/> <connect from_op="Logistic Regression" from_port="model" to_op="Apply Model" to_port="model"/> <connect from_op="Logistic Regression" from_port="exampleSet" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Original Performance" to_port="labelled data"/> <connect from_op="Original Performance" from_port="performance" to_port="result 1"/> <connect from_op="Original Performance" from_port="example set" to_op="Optimize Parameters (Grid)" to_port="input 1"/> <connect from_op="Optimize Parameters (Grid)" from_port="performance" to_op="Tested Threshold Table" to_port="through 1"/> <connect from_op="Optimize Parameters (Grid)" from_port="parameter" to_port="result 4"/> <connect from_op="Tested Threshold Table" from_port="exampleSet" to_port="result 2"/> <connect from_op="Tested Threshold Table" from_port="through 1" to_port="result 3"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="54"/> <portSpacing port="sink_result 3" spacing="0"/> <portSpacing port="sink_result 4" spacing="54"/> <portSpacing port="sink_result 5" spacing="0"/> </process> </operator></process>