"Text Mining Questions"
Hello,
I'm using Rapidminer for the first time and I'm currently struggling with the following issue:
Thanks a lot,
Adrian
I'm using Rapidminer for the first time and I'm currently struggling with the following issue:
- I have several texts which I want to split into sentences. Each of the texts is stored in a single cell of a column in an Excel file.
- After that, I want to extract frequently occurring terms from these sentences.
- As third step I want to automatically categorize the sentences depending on the terms respectively a combinations of the terms.
- Finally I want to be able to select for example the term "colours" and subsequently I want to get shown all sentences containing this term.
Thanks a lot,
Adrian
Find more posts tagged with
Sort by:
1 - 4 of
41
Hi Martin,
Thanks for the link.
I'm currently trying to split the texts, which I imported from an Excel sheet, into sentences and I have absolutely no idea what I'm doing wrong here. I tried the "Tokenize" operator of the Text Processing addon as well as the "SentenceTokenizer" of the Information Extraction addon. None of these is working. The code you can find below. I'm grateful for any hint.
Adrian
Thanks for the link.
I'm currently trying to split the texts, which I imported from an Excel sheet, into sentences and I have absolutely no idea what I'm doing wrong here. I tried the "Tokenize" operator of the Text Processing addon as well as the "SentenceTokenizer" of the Information Extraction addon. None of these is working. The code you can find below. I'm grateful for any hint.
Thank you,
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.3.013">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="5.3.013" expanded="true" name="Process">
<process expanded="true">
<operator activated="true" class="read_excel" compatibility="5.3.013" expanded="true" height="60" name="Read Excel" width="90" x="45" y="75">
<parameter key="excel_file" value="C:\Users\a.ressel\Desktop\RapidMiner Test\Input\1 - Reports\report_list_henkel_export-2014-05-07(all three tests).xlsx"/>
<parameter key="imported_cell_range" value="BI2:BI163"/>
<parameter key="first_row_as_names" value="false"/>
<list key="annotations"/>
<list key="data_set_meta_data_information">
<parameter key="0" value="Reports.true.text."/>
</list>
</operator>
<operator activated="true" class="multiply" compatibility="5.3.013" expanded="true" height="94" name="Multiply" width="90" x="179" y="75"/>
<operator activated="true" class="information_extraction:sentence_tokenizer" compatibility="1.0.000" expanded="true" height="76" name="SentenceTokenizer" width="90" x="380" y="120">
<parameter key="optionalAttribute" value="Reports"/>
<parameter key="new token-name" value="Sentences"/>
</operator>
<operator activated="true" class="text:process_document_from_data" compatibility="5.3.002" expanded="true" height="76" name="Process Documents from Data" width="90" x="380" y="30">
<parameter key="create_word_vector" value="false"/>
<parameter key="add_meta_information" value="false"/>
<list key="specify_weights"/>
<process expanded="true">
<operator activated="true" class="text:tokenize" compatibility="5.3.002" expanded="true" height="60" name="Tokenize" width="90" x="179" y="30">
<parameter key="mode" value="linguistic sentences"/>
</operator>
<connect from_port="document" to_op="Tokenize" to_port="document"/>
<connect from_op="Tokenize" from_port="document" to_port="document 1"/>
<portSpacing port="source_document" spacing="0"/>
<portSpacing port="sink_document 1" spacing="0"/>
<portSpacing port="sink_document 2" spacing="0"/>
</process>
</operator>
<connect from_op="Read Excel" from_port="output" to_op="Multiply" to_port="input"/>
<connect from_op="Multiply" from_port="output 1" to_op="Process Documents from Data" to_port="example set"/>
<connect from_op="Multiply" from_port="output 2" to_op="SentenceTokenizer" to_port="example set input"/>
<connect from_op="SentenceTokenizer" from_port="example set output" to_port="result 2"/>
<connect from_op="Process Documents from Data" from_port="example set" to_port="result 1"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
</process>
</operator>
</process>
Adrian
you might have a look at this tutorial. It should help you to start with Rapidminer:
http://vancouverdata.blogspot.de/2011/02/how-to-web-scraping-xpath-html-google.html
If you have further questions, feel free to ask.
Cheers,
Martin