A program to recognize and reward our most engaged community members
MultiClassificationPerformance performance = (MultiClassificationPerformance) ioObject;ConfusionMatrixViewer viewer = new ConfusionMatrixViewer(performance.getName(), performance.getTitle(), performance.getClassNames(), performance.getCounter());
java.lang.ClassCastException: com.rapidminer.operator.performance.PerformanceVector cannot be cast to com.rapidminer.operator.performance.MultiClassificationPerformance
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.3.015"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="5.3.015" expanded="true" name="Process"> <parameter key="logverbosity" value="init"/> <parameter key="random_seed" value="2001"/> <parameter key="send_mail" value="never"/> <parameter key="notification_email" value=""/> <parameter key="process_duration_for_mail" value="30"/> <parameter key="encoding" value="SYSTEM"/> <process expanded="true"> <operator activated="true" class="retrieve" compatibility="5.3.015" expanded="true" height="60" name="Retrieve A" width="90" x="112" y="75"> <parameter key="repository_entry" value="//Local Repository/A"/> </operator> <operator activated="true" class="retrieve" compatibility="5.3.015" expanded="true" height="60" name="Retrieve B" width="90" x="112" y="210"> <parameter key="repository_entry" value="//Local Repository/B"/> </operator> <operator activated="true" class="join" compatibility="5.3.015" expanded="true" height="76" name="Join" width="90" x="313" y="120"> <parameter key="remove_double_attributes" value="true"/> <parameter key="join_type" value="inner"/> <parameter key="use_id_attribute_as_key" value="true"/> <list key="key_attributes"/> <parameter key="keep_both_join_attributes" value="false"/> </operator> <operator activated="true" class="x_validation" compatibility="5.3.015" expanded="true" height="112" name="Validation" width="90" x="514" y="30"> <parameter key="create_complete_model" value="false"/> <parameter key="average_performances_only" value="true"/> <parameter key="leave_one_out" value="false"/> <parameter key="number_of_validations" value="10"/> <parameter key="sampling_type" value="stratified sampling"/> <parameter key="use_local_random_seed" value="false"/> <parameter key="local_random_seed" value="1992"/> <process expanded="true"> <operator activated="true" class="decision_tree" compatibility="5.3.015" expanded="true" height="76" name="Decision Tree" width="90" x="179" y="165"> <parameter key="criterion" value="accuracy"/> <parameter key="minimal_size_for_split" value="4"/> <parameter key="minimal_leaf_size" value="2"/> <parameter key="minimal_gain" value="0.1"/> <parameter key="maximal_depth" value="20"/> <parameter key="confidence" value="0.25"/> <parameter key="number_of_prepruning_alternatives" value="3"/> <parameter key="no_pre_pruning" value="false"/> <parameter key="no_pruning" value="false"/> </operator> <connect from_port="training" to_op="Decision Tree" to_port="training set"/> <connect from_op="Decision Tree" from_port="model" to_port="model"/> <portSpacing port="source_training" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true"> <operator activated="true" class="apply_model" compatibility="5.3.015" expanded="true" height="76" name="Apply Model" width="90" x="112" y="75"> <list key="application_parameters"/> <parameter key="create_view" value="false"/> </operator> <operator activated="true" class="performance" compatibility="5.3.015" expanded="true" height="76" name="Performance" width="90" x="112" y="300"> <parameter key="use_example_weights" value="true"/> </operator> <connect from_port="model" to_op="Apply Model" to_port="model"/> <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/> <connect from_op="Performance" from_port="performance" to_port="averagable 1"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_averagable 1" spacing="0"/> <portSpacing port="sink_averagable 2" spacing="0"/> </process> </operator> <connect from_op="Retrieve A" from_port="output" to_op="Join" to_port="left"/> <connect from_op="Retrieve B" from_port="output" to_op="Join" to_port="right"/> <connect from_op="Join" from_port="join" to_op="Validation" to_port="training"/> <connect from_op="Validation" from_port="model" to_port="result 1"/> <connect from_op="Validation" from_port="training" to_port="result 2"/> <connect from_op="Validation" from_port="averagable 1" to_port="result 3"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> <portSpacing port="sink_result 4" spacing="0"/> </process> </operator></process>
PerformanceVector performance = (PerformanceVector) ioObject;