An exclusive raffle opportunity for active members like you! Complete your profile, answer questions and get your first accepted badge to enter the raffle.
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.3.013"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="5.3.013" expanded="true" name="Process"> <process expanded="true"> <operator activated="true" class="retrieve" compatibility="5.3.013" expanded="true" height="60" name="Retrieve Iris" width="90" x="45" y="30"> <parameter key="repository_entry" value="//Samples/data/Iris"/> </operator> <operator activated="true" class="execute_script" compatibility="5.3.013" expanded="true" height="76" name="Execute Script" width="90" x="179" y="30"> <parameter key="script" value="import javax.swing.JOptionPane; import com.rapidminer.example.ExampleSet; import com.rapidminer.Process; import com.rapidminer.gui.RapidMinerGUI; import com.rapidminer.operator.learner.tree.DecisionTreeLearner; ExampleSet exampleSet = input[0]; String input = JOptionPane.showInputDialog("Input new minimal leaf size parameter for Decision Tree:"); Process process = RapidMinerGUI.getMainFrame().getProcess(); process.getOperator("Decision Tree").setParameter(DecisionTreeLearner.PARAMETER_MINIMAL_LEAF_SIZE, input); return exampleSet;"/> </operator> <operator activated="true" class="decision_tree" compatibility="5.3.013" expanded="true" height="76" name="Decision Tree" width="90" x="313" y="30"> <parameter key="minimal_leaf_size" value="300"/> </operator> <connect from_op="Retrieve Iris" from_port="output" to_op="Execute Script" to_port="input 1"/> <connect from_op="Execute Script" from_port="output 1" to_op="Decision Tree" to_port="training set"/> <connect from_op="Decision Tree" from_port="model" to_port="result 1"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> </process> </operator></process>