Please excuse vague title. I am currently using an unsupervised SOM clustering approach to try to determine values for a target attribute that is mostly missing. I am using SOM for several reasons I won't go into now, however I'm also open to other suggestions.
I have ~8000 observations of 10 attributes, the last of which is about 99.99% missing (the target). It has only about 17 observations, quite spread apart (the other attributes are mostly complete, but I think I can manage their missing values simply with means & medians).
The 'typical' workflow I am aware of from Wikipedia (!) is to split the data into training (66%) and test sets, train the SOM with the training set, and then map or predict with the test set on the trained SOM. In my case I am putting the entire data set into the SOM minus the target attribute (because it's mostly missing values), and then I don't know what to do from there.
I may be on the wrong track here, but if I have <20 observations with which to 'calibrate' my model, how do I follow this strategy?
I am not a statistician, and am finding it difficult to follow answers to other questions here and elsewhere, so please dumb down any response