A program to recognize and reward our most engaged community members
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.3.005"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="5.3.005" expanded="true" name="Process"> <process expanded="true"> <operator activated="true" class="read_csv" compatibility="5.3.005" expanded="true" height="60" name="1000_instance_train_data" width="90" x="45" y="30"> <parameter key="csv_file" value="D:\Promotion\Matlab\Ich\Workspaces\Tag\Feature_Matrix_nonlin_check.csv"/> <parameter key="first_row_as_names" value="false"/> <list key="annotations"> <parameter key="0" value="Name"/> </list> <parameter key="encoding" value="windows-1252"/> <list key="data_set_meta_data_information"> <parameter key="0" value="label.true.binominal.label"/> <parameter key="1" value="a1.true.real.attribute"/> <parameter key="2" value="a2.true.real.attribute"/> <parameter key="3" value="a3.true.real.attribute"/> <parameter key="4" value="a4.true.real.attribute"/> <parameter key="322" value="a322.true.real.attribute"/> <parameter key="323" value="a323.true.real.attribute"/> <parameter key="324" value="a324.true.real.attribute"/> </list> </operator> <operator activated="true" class="multiply" compatibility="5.3.005" expanded="true" height="94" name="Multiply" width="90" x="179" y="30"/> <operator activated="true" class="read_csv" compatibility="5.3.005" expanded="true" height="60" name="1_new_instance" width="90" x="112" y="300"> <parameter key="csv_file" value="D:\Promotion\Matlab\Ich\Workspaces\Tag\Feature_Matrix_nonlin_check.csv"/> <parameter key="first_row_as_names" value="false"/> <list key="annotations"> <parameter key="0" value="Name"/> </list> <parameter key="encoding" value="windows-1252"/> <list key="data_set_meta_data_information"> <parameter key="0" value="label.true.integer.attribute"/> <parameter key="1" value="a1.true.real.attribute"/> <parameter key="2" value="a2.true.real.attribute"/> <parameter key="3" value="a3.true.real.attribute"/> <parameter key="4" value="a4.true.real.attribute"/> <parameter key="321" value="a321.true.real.attribute"/> <parameter key="322" value="a322.true.real.attribute"/> <parameter key="323" value="a323.true.real.attribute"/> <parameter key="324" value="a324.true.real.attribute"/> </list> </operator> <operator activated="true" class="optimize_selection_forward" compatibility="5.3.005" expanded="true" height="94" name="Forward Selection" width="90" x="313" y="30"> <process expanded="true"> <operator activated="true" class="series:sliding_window_validation" compatibility="5.3.000" expanded="true" height="112" name="Validation" width="90" x="112" y="30"> <process expanded="true"> <operator activated="true" class="naive_bayes" compatibility="5.3.005" expanded="true" height="76" name="Naive Bayes" width="90" x="112" y="30"/> <connect from_port="training" to_op="Naive Bayes" to_port="training set"/> <connect from_op="Naive Bayes" from_port="model" to_port="model"/> <portSpacing port="source_training" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true"> <operator activated="true" class="apply_model" compatibility="5.3.005" expanded="true" height="76" name="Apply Model" width="90" x="45" y="30"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" compatibility="5.3.005" expanded="true" height="76" name="Performance_train_data_validation" width="90" x="216" y="30"> <list key="class_weights"/> </operator> <connect from_port="model" to_op="Apply Model" to_port="model"/> <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Performance_train_data_validation" to_port="labelled data"/> <connect from_op="Performance_train_data_validation" from_port="performance" to_port="averagable 1"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_averagable 1" spacing="0"/> <portSpacing port="sink_averagable 2" spacing="0"/> </process> </operator> <connect from_port="example set" to_op="Validation" to_port="training"/> <connect from_op="Validation" from_port="averagable 1" to_port="performance"/> <portSpacing port="source_example set" spacing="0"/> <portSpacing port="sink_performance" spacing="0"/> </process> </operator> <operator activated="true" class="select_by_weights" compatibility="5.3.005" expanded="true" height="94" name="Select by Weights" width="90" x="179" y="165"/> <operator activated="true" class="naive_bayes" compatibility="5.3.005" expanded="true" height="76" name="Naive Bayes (2)" width="90" x="313" y="165"/> <operator activated="true" class="multiply" compatibility="5.3.005" expanded="true" height="94" name="Multiply (2)" width="90" x="447" y="165"/> <operator activated="true" class="apply_model" compatibility="5.3.005" expanded="true" height="76" name="Apply Model_train_data_new" width="90" x="581" y="165"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" compatibility="5.3.005" expanded="true" height="76" name="Performance_train_data_new" width="90" x="715" y="165"> <list key="class_weights"/> </operator> <operator activated="true" class="select_by_weights" compatibility="5.3.005" expanded="true" height="94" name="Select by Weights (2)" width="90" x="313" y="300"/> <operator activated="true" class="update_model" compatibility="5.3.005" expanded="true" height="76" name="Update Model" width="90" x="447" y="300"/> <operator activated="true" class="read_csv" compatibility="5.3.005" expanded="true" height="60" name="1001_instances_new_training" width="90" x="112" y="435"> <parameter key="csv_file" value="D:\Promotion\Matlab\Ich\Workspaces\Tag\Feature_Matrix_nonlin_check.csv"/> <parameter key="first_row_as_names" value="false"/> <list key="annotations"> <parameter key="0" value="Name"/> </list> <parameter key="encoding" value="windows-1252"/> <list key="data_set_meta_data_information"> <parameter key="0" value="label.true.binominal.label"/> <parameter key="1" value="a1.true.real.attribute"/> <parameter key="2" value="a2.true.real.attribute"/> <parameter key="3" value="a3.true.real.attribute"/> <parameter key="4" value="a4.true.real.attribute"/> <parameter key="321" value="a321.true.real.attribute"/> <parameter key="322" value="a322.true.real.attribute"/> <parameter key="323" value="a323.true.real.attribute"/> <parameter key="324" value="a324.true.real.attribute"/> </list> </operator> <operator activated="true" class="select_by_weights" compatibility="5.3.005" expanded="true" height="94" name="Select by Weights (3)" width="90" x="380" y="435"/> <operator activated="true" class="apply_model" compatibility="5.3.005" expanded="true" height="76" name="Apply Model_to_new_trainingset" width="90" x="581" y="300"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance_classification" compatibility="5.3.005" expanded="true" height="76" name="Performance_train_data_new (2)" width="90" x="715" y="300"> <list key="class_weights"/> </operator> <connect from_op="1000_instance_train_data" from_port="output" to_op="Multiply" to_port="input"/> <connect from_op="Multiply" from_port="output 1" to_op="Forward Selection" to_port="example set"/> <connect from_op="Multiply" from_port="output 2" to_op="Select by Weights" to_port="example set input"/> <connect from_op="1_new_instance" from_port="output" to_op="Select by Weights (2)" to_port="example set input"/> <connect from_op="Forward Selection" from_port="attribute weights" to_op="Select by Weights" to_port="weights"/> <connect from_op="Forward Selection" from_port="performance" to_port="result 1"/> <connect from_op="Select by Weights" from_port="example set output" to_op="Naive Bayes (2)" to_port="training set"/> <connect from_op="Select by Weights" from_port="weights" to_op="Select by Weights (2)" to_port="weights"/> <connect from_op="Naive Bayes (2)" from_port="model" to_op="Multiply (2)" to_port="input"/> <connect from_op="Naive Bayes (2)" from_port="exampleSet" to_op="Apply Model_train_data_new" to_port="unlabelled data"/> <connect from_op="Multiply (2)" from_port="output 1" to_op="Apply Model_train_data_new" to_port="model"/> <connect from_op="Multiply (2)" from_port="output 2" to_op="Update Model" to_port="model"/> <connect from_op="Apply Model_train_data_new" from_port="labelled data" to_op="Performance_train_data_new" to_port="labelled data"/> <connect from_op="Performance_train_data_new" from_port="performance" to_port="result 2"/> <connect from_op="Select by Weights (2)" from_port="example set output" to_op="Update Model" to_port="example set"/> <connect from_op="Select by Weights (2)" from_port="weights" to_op="Select by Weights (3)" to_port="weights"/> <connect from_op="Update Model" from_port="model" to_op="Apply Model_to_new_trainingset" to_port="model"/> <connect from_op="1001_instances_new_training" from_port="output" to_op="Select by Weights (3)" to_port="example set input"/> <connect from_op="Select by Weights (3)" from_port="example set output" to_op="Apply Model_to_new_trainingset" to_port="unlabelled data"/> <connect from_op="Apply Model_to_new_trainingset" from_port="labelled data" to_op="Performance_train_data_new (2)" to_port="labelled data"/> <connect from_op="Performance_train_data_new (2)" from_port="performance" to_port="result 3"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> <portSpacing port="sink_result 4" spacing="0"/> </process> </operator></process>