🎉Community Raffle - Win $25

An exclusive raffle opportunity for active members like you! Complete your profile, answer questions and get your first accepted badge to enter the raffle.
Join and Win

"(solved) Clustering and classify unlabelled dataset"

User: "blueearth"
New Altair Community Member
Updated by Jocelyn
Hi all.
I have an example set without any special attributes ...is it possible to run unsupervised clustering or classification on it in order to cluster or classify these data?
for example i have set of regular attributes and i want a model to cluster or classify them with regards to regular attributes...is there any operator or processes for this purpose
Thank you.

Find more posts tagged with

Sort by:
1 - 4 of 41
    User: "Andrew2"
    New Altair Community Member
    Hello

    Yes indeed - all the clustering algorithms can do this.

    Here's an example using k-means. For fun, it also joins the cluster result back to the original and maps clusters to labels to come up with a classification performance.

    <?xml version="1.0" encoding="UTF-8" standalone="no"?>
    <process version="5.2.008">
      <context>
        <input/>
        <output/>
        <macros/>
      </context>
      <operator activated="true" class="process" compatibility="5.2.008" expanded="true" name="Process">
        <process expanded="true" height="431" width="1016">
          <operator activated="true" class="retrieve" compatibility="5.2.008" expanded="true" height="60" name="Retrieve" width="90" x="45" y="30">
            <parameter key="repository_entry" value="//Samples/data/Iris"/>
          </operator>
          <operator activated="true" class="select_attributes" compatibility="5.2.008" expanded="true" height="76" name="Select Attributes" width="90" x="179" y="165">
            <parameter key="attribute_filter_type" value="subset"/>
            <parameter key="attributes" value="|a4|a3|a2|a1"/>
            <parameter key="include_special_attributes" value="true"/>
          </operator>
          <operator activated="true" class="k_means" compatibility="5.2.008" expanded="true" height="76" name="Clustering" width="90" x="313" y="30">
            <parameter key="k" value="3"/>
            <parameter key="measure_types" value="NumericalMeasures"/>
            <parameter key="numerical_measure" value="CosineSimilarity"/>
          </operator>
          <operator activated="true" class="replace" compatibility="5.2.008" expanded="true" height="76" name="Replace" width="90" x="313" y="300">
            <parameter key="attribute_filter_type" value="single"/>
            <parameter key="attribute" value="id"/>
            <parameter key="include_special_attributes" value="true"/>
            <parameter key="replace_what" value="id_(.*)"/>
            <parameter key="replace_by" value="$1"/>
          </operator>
          <operator activated="true" class="guess_types" compatibility="5.2.008" expanded="true" height="76" name="Guess Types" width="90" x="447" y="300">
            <parameter key="attribute_filter_type" value="single"/>
            <parameter key="attribute" value="id"/>
            <parameter key="include_special_attributes" value="true"/>
          </operator>
          <operator activated="true" class="guess_types" compatibility="5.2.008" expanded="true" height="76" name="Guess Types (2)" width="90" x="447" y="165">
            <parameter key="attribute_filter_type" value="single"/>
            <parameter key="attribute" value="id"/>
            <parameter key="include_special_attributes" value="true"/>
          </operator>
          <operator activated="true" class="join" compatibility="5.2.008" expanded="true" height="76" name="Join" width="90" x="581" y="120">
            <list key="key_attributes"/>
          </operator>
          <operator activated="true" class="map_clustering_on_labels" compatibility="5.2.008" expanded="true" height="76" name="Map Clustering on Labels" width="90" x="715" y="30"/>
          <operator activated="true" class="performance" compatibility="5.2.008" expanded="true" height="76" name="Performance" width="90" x="849" y="30"/>
          <connect from_op="Retrieve" from_port="output" to_op="Select Attributes" to_port="example set input"/>
          <connect from_op="Select Attributes" from_port="example set output" to_op="Clustering" to_port="example set"/>
          <connect from_op="Select Attributes" from_port="original" to_op="Replace" to_port="example set input"/>
          <connect from_op="Clustering" from_port="cluster model" to_op="Map Clustering on Labels" to_port="cluster model"/>
          <connect from_op="Clustering" from_port="clustered set" to_op="Guess Types (2)" to_port="example set input"/>
          <connect from_op="Replace" from_port="example set output" to_op="Guess Types" to_port="example set input"/>
          <connect from_op="Guess Types" from_port="example set output" to_op="Join" to_port="right"/>
          <connect from_op="Guess Types (2)" from_port="example set output" to_op="Join" to_port="left"/>
          <connect from_op="Guess Types (2)" from_port="original" to_port="result 2"/>
          <connect from_op="Join" from_port="join" to_op="Map Clustering on Labels" to_port="example set"/>
          <connect from_op="Map Clustering on Labels" from_port="example set" to_op="Performance" to_port="labelled data"/>
          <connect from_op="Performance" from_port="performance" to_port="result 1"/>
          <portSpacing port="source_input 1" spacing="0"/>
          <portSpacing port="sink_result 1" spacing="0"/>
          <portSpacing port="sink_result 2" spacing="0"/>
          <portSpacing port="sink_result 3" spacing="0"/>
        </process>
      </operator>
    </process>


    regards

    Andrew
    User: "blueearth"
    New Altair Community Member
    OP
    Hi thank you so much
    but unfortunately i didn't get it
    here we have spacial attributes such as label and id in that example but what i have is an example set with out any special attributes and id its all just regular attributes and i want to know is it possible to cluster or classify them according to regular attributes?
    thanks alot
    User: "Andrew2"
    New Altair Community Member
    Hello

    Select the Clustering operator and set a breakpoint before it executes and one after.

    If you run the process you will see that the input to the operator is an example set consisting of 4 regular attributes whilst the output has an id and a cluster attribute added.

    regards

    Andrew



    User: "blueearth"
    New Altair Community Member
    OP
    Thank you so much :D