Hi,
I am trying to find best parameters for SVM regression by Cross Validation and parameter optimization. I have used log operator to log optimization process and values. In log window, i search for best parameters based on correlation coefficient criteria, for example it's logged value is 84.5.The problem is that logged performance doesn't remain fixed and differs a lot (changes to 78) every time i apply the same parameters and data in a new X-validation or even when i change the steps and change it form 30 to 60 for example i get the same result in log window but differet result when test those parameter in a new X-validation.
Thanks a lot.
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.2.008">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="5.2.008" expanded="true" name="Process">
<process expanded="true" height="314" width="748">
<operator activated="true" class="read_csv" compatibility="5.2.008" expanded="true" height="60" name="Read CSV" width="90" x="48" y="117">
<list key="annotations"/>
<list key="data_set_meta_data_information"/>
</operator>
<operator activated="true" class="normalize" compatibility="5.2.008" expanded="true" height="94" name="Normalize" width="90" x="313" y="210">
<parameter key="include_special_attributes" value="true"/>
<parameter key="method" value="range transformation"/>
</operator>
<operator activated="true" class="filter_examples" compatibility="5.2.008" expanded="true" height="76" name="Filter Examples" width="90" x="447" y="30">
<parameter key="condition_class" value="attribute_value_filter"/>
<parameter key="parameter_string" value="well-id=0.5"/>
<parameter key="invert_filter" value="true"/>
</operator>
<operator activated="true" class="optimize_parameters_grid" compatibility="5.2.008" expanded="true" height="94" name="Optimize Parameters (Grid)" width="90" x="648" y="30">
<list key="parameters">
<parameter key="SVM.C" value="[30;3000;30;linear]"/>
<parameter key="SVM.gamma" value="[0.1;0.15;4;linear]"/>
</list>
<process expanded="true" height="629" width="950">
<operator activated="true" class="x_validation" compatibility="5.2.008" expanded="true" height="112" name="Validation" width="90" x="179" y="210">
<parameter key="sampling_type" value="shuffled sampling"/>
<process expanded="true" height="629" width="450">
<operator activated="true" class="support_vector_machine_libsvm" compatibility="5.2.008" expanded="true" height="76" name="SVM" width="90" x="179" y="30">
<parameter key="svm_type" value="epsilon-SVR"/>
<parameter key="gamma" value="0.1"/>
<parameter key="C" value="875.75"/>
<parameter key="p" value="0.01"/>
<list key="class_weights"/>
</operator>
<connect from_port="training" to_op="SVM" to_port="training set"/>
<connect from_op="SVM" from_port="model" to_port="model"/>
<portSpacing port="source_training" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true" height="629" width="450">
<operator activated="true" class="apply_model" compatibility="5.2.008" expanded="true" height="76" name="Apply Model" width="90" x="97" y="32">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance_regression" compatibility="5.2.008" expanded="true" height="76" name="Performance" width="90" x="246" y="30">
<parameter key="main_criterion" value="squared_correlation"/>
<parameter key="absolute_error" value="true"/>
<parameter key="correlation" value="true"/>
<parameter key="skip_undefined_labels" value="false"/>
</operator>
<connect from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance" from_port="performance" to_port="averagable 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_averagable 1" spacing="0"/>
<portSpacing port="sink_averagable 2" spacing="0"/>
</process>
</operator>
<operator activated="true" class="log" compatibility="5.2.008" expanded="true" height="76" name="Log" width="90" x="514" y="210">
<list key="log">
<parameter key="C" value="operator.SVM.parameter.C"/>
<parameter key="Gamma" value="operator.SVM.parameter.gamma"/>
<parameter key="C OF D" value="operator.Validation.value.performance"/>
<parameter key="RMSE" value="operator.Validation.value.performance1"/>
<parameter key="ABS" value="operator.Validation.value.performance2"/>
<parameter key="CC" value="operator.Validation.value.performance3"/>
<parameter key="DEVIATION" value="operator.Validation.value.deviation"/>
<parameter key="VARIANCE" value="operator.Validation.value.variance"/>
</list>
</operator>
<connect from_port="input 1" to_op="Validation" to_port="training"/>
<connect from_op="Validation" from_port="averagable 1" to_op="Log" to_port="through 1"/>
<connect from_op="Log" from_port="through 1" to_port="performance"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="source_input 2" spacing="0"/>
<portSpacing port="sink_performance" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
</process>
</operator>
<connect from_op="Read CSV" from_port="output" to_op="Normalize" to_port="example set input"/>
<connect from_op="Normalize" from_port="example set output" to_op="Filter Examples" to_port="example set input"/>
<connect from_op="Filter Examples" from_port="example set output" to_op="Optimize Parameters (Grid)" to_port="input 1"/>
<connect from_op="Optimize Parameters (Grid)" from_port="performance" to_port="result 1"/>
<connect from_op="Optimize Parameters (Grid)" from_port="parameter" to_port="result 2"/>
<portSpacing port="source_input 1" spacing="162"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
</process>
</operator>
</process>