A program to recognize and reward our most engaged community members
00114 // optimization loop00115 for (int cycle = 0; cycle < maxCycles; cycle++) {00116 double error = 0;00117 int maxSize = exampleSet.size();00118 for (int index = 0; index < maxSize; index++) {00119 int exampleIndex = index;00120 if (exampleIndices != null) {00121 exampleIndex = exampleIndices[index];00122 }00123 00124 Example example = exampleSet.getExample(exampleIndex);00125 00126 resetNetwork();00127 00128 calculateValue(example);00129 00130 double weight = 1.0;00131 if (weightAttribute != null) {00132 weight = example.getValue(weightAttribute);00133 }00134 00135 double tempRate = learningRate * weight;00136 if (decay) {00137 tempRate /= cycle + 1;00138 }00139 00140 error += calculateError(example) / numberOfClasses * weight;00141 update(example, tempRate, momentum);00142 }