🎉Community Raffle - Win $25

An exclusive raffle opportunity for active members like you! Complete your profile, answer questions and get your first accepted badge to enter the raffle.
Join and Win

How exactly does Naive Bayes Kernel get its confidence level?

User: "montaqi"
New Altair Community Member
Updated by Jocelyn
I have built a process like this, with little knowledge about Naive Bayes (Kernel)'s setup.

<process version="5.1.006">
  <context>
    <input/>
    <output/>
    <macros/>
  </context>
  <operator activated="true" class="process" compatibility="5.1.006" expanded="true" name="Process">
    <process expanded="true" height="476" width="815">
      <operator activated="true" class="text:process_document_from_file" compatibility="5.1.001" expanded="true" height="76" name="Process Documents from Files" width="90" x="45" y="30">
        <list key="text_directories">
          <parameter key="positive" value="C:\Documents and Settings\TU001YU\Desktop\positive"/>
          <parameter key="negative" value="C:\Documents and Settings\TU001YU\Desktop\negative"/>
        </list>
        <process expanded="true" height="524" width="806">
          <operator activated="true" class="text:transform_cases" compatibility="5.1.001" expanded="true" height="60" name="Transform Cases" width="90" x="179" y="30"/>
          <operator activated="true" class="text:tokenize" compatibility="5.1.001" expanded="true" height="60" name="Tokenize" width="90" x="447" y="30"/>
          <connect from_port="document" to_op="Transform Cases" to_port="document"/>
          <connect from_op="Transform Cases" from_port="document" to_op="Tokenize" to_port="document"/>
          <connect from_op="Tokenize" from_port="document" to_port="document 1"/>
          <portSpacing port="source_document" spacing="0"/>
          <portSpacing port="sink_document 1" spacing="0"/>
          <portSpacing port="sink_document 2" spacing="0"/>
        </process>
      </operator>
      <operator activated="true" class="naive_bayes_kernel" compatibility="5.1.006" expanded="true" height="76" name="Naive Bayes (Kernel)" width="90" x="447" y="30"/>
      <operator activated="true" class="read_excel" compatibility="5.1.006" expanded="true" height="60" name="Read Excel" width="90" x="45" y="300">
        <parameter key="excel_file" value="C:\Documents and Settings\TU001YU\Desktop\BBCNewsFeeds.xls"/>
        <parameter key="imported_cell_range" value="A1"/>
        <list key="annotations"/>
        <list key="data_set_meta_data_information"/>
      </operator>
      <operator activated="true" class="nominal_to_text" compatibility="5.1.006" expanded="true" height="76" name="Nominal to Text" width="90" x="179" y="300"/>
      <operator activated="true" class="text:data_to_documents" compatibility="5.1.001" expanded="true" height="60" name="Data to Documents" width="90" x="313" y="300">
        <list key="specify_weights"/>
      </operator>
      <operator activated="true" class="text:process_documents" compatibility="5.1.001" expanded="true" height="94" name="Process Documents" width="90" x="447" y="165">
        <process expanded="true" height="524" width="806">
          <operator activated="true" class="text:transform_cases" compatibility="5.1.001" expanded="true" height="60" name="Transform Cases (2)" width="90" x="112" y="30"/>
          <operator activated="true" class="text:tokenize" compatibility="5.1.001" expanded="true" height="60" name="Tokenize (2)" width="90" x="246" y="30"/>
          <operator activated="true" class="text:stem_porter" compatibility="5.1.001" expanded="true" height="60" name="Stem (Porter)" width="90" x="380" y="30"/>
          <operator activated="true" class="text:filter_stopwords_english" compatibility="5.1.001" expanded="true" height="60" name="Filter Stopwords (2)" width="90" x="514" y="30"/>
          <operator activated="true" class="text:filter_by_length" compatibility="5.1.001" expanded="true" height="60" name="Filter Tokens (by Length)" width="90" x="648" y="30">
            <parameter key="min_chars" value="2"/>
            <parameter key="max_chars" value="99"/>
          </operator>
          <connect from_port="document" to_op="Transform Cases (2)" to_port="document"/>
          <connect from_op="Transform Cases (2)" from_port="document" to_op="Tokenize (2)" to_port="document"/>
          <connect from_op="Tokenize (2)" from_port="document" to_op="Stem (Porter)" to_port="document"/>
          <connect from_op="Stem (Porter)" from_port="document" to_op="Filter Stopwords (2)" to_port="document"/>
          <connect from_op="Filter Stopwords (2)" from_port="document" to_op="Filter Tokens (by Length)" to_port="document"/>
          <connect from_op="Filter Tokens (by Length)" from_port="document" to_port="document 1"/>
          <portSpacing port="source_document" spacing="0"/>
          <portSpacing port="sink_document 1" spacing="0"/>
          <portSpacing port="sink_document 2" spacing="0"/>
        </process>
      </operator>
      <operator activated="true" class="apply_model" compatibility="5.1.006" expanded="true" height="76" name="Apply Model" width="90" x="648" y="30">
        <list key="application_parameters"/>
      </operator>
      <connect from_op="Process Documents from Files" from_port="example set" to_op="Naive Bayes (Kernel)" to_port="training set"/>
      <connect from_op="Process Documents from Files" from_port="word list" to_op="Process Documents" to_port="word list"/>
      <connect from_op="Naive Bayes (Kernel)" from_port="model" to_op="Apply Model" to_port="model"/>
      <connect from_op="Read Excel" from_port="output" to_op="Nominal to Text" to_port="example set input"/>
      <connect from_op="Nominal to Text" from_port="example set output" to_op="Data to Documents" to_port="example set"/>
      <connect from_op="Data to Documents" from_port="documents" to_op="Process Documents" to_port="documents 1"/>
      <connect from_op="Process Documents" from_port="example set" to_op="Apply Model" to_port="unlabelled data"/>
      <connect from_op="Apply Model" from_port="labelled data" to_port="result 1"/>
      <connect from_op="Apply Model" from_port="model" to_port="result 2"/>
      <portSpacing port="source_input 1" spacing="0"/>
      <portSpacing port="sink_result 1" spacing="0"/>
      <portSpacing port="sink_result 2" spacing="0"/>
      <portSpacing port="sink_result 3" spacing="0"/>
    </process>
  </operator>
</process>


I would like some help on how I can improve upon this current process, as well as how exactly does Naive Bayes Kernel calculate its Confidence?

I inserted two txt files each containing a list of words. Then I process an excel file and try to classify each row. I took a look at wikipedia for how Naive Bayes works already, but I am not sure how the Kernel one works.

Could anyone provide me a formula of how RM calculates this?

For example, if a row in an excel file contains 5 words that match with Postive and 4 words that match with Negative, and 11 words that do not much either of those, how would Naive Bayes Kernel calculate this and classify this?

Thank you very much, I am a CS student doing internship, so not quite know the maths side.

Find more posts tagged with

Sort by:
1 - 1 of 11