A program to recognize and reward our most engaged community members
KMeans Methode merge measurement values especiallydepending on the first 3 attributes.
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.1.001"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="5.0.000" expanded="true" name="Root"> <description><p>In many cases, no target attribute (label) can be defined and the data should be automatically grouped. This procedure is called &quot;Clustering&quot;. RapidMiner supports a wide range of clustering schemes which can be used in just the same way like any other learning scheme. This includes the combination with all preprocessing operators. <p> <p> In this experimen, the well-known Iris data set is loaded (the label is loaded, too, but it is only used for visualization and comparison and not for building the clusters itself). One of the most simple clustering schemes, namely KMeans, is then applied to this data set. Afterwards, a dimensionality reduction is performed in order to better support the visualization of the data set in two dimensions. </p><p> Just perform the process and compare the clustering result with the original label (e.g. in the plot view of the example set). You can also visualize the cluster model itself. </p></description> <parameter key="logverbosity" value="warning"/> <process expanded="true" height="604" width="981"> <operator activated="true" class="retrieve" compatibility="5.0.000" expanded="true" height="60" name="Retrieve" width="90" x="44" y="31"> <parameter key="repository_entry" value="../../data/Iris"/> </operator> <operator activated="true" class="k_means" compatibility="5.0.000" expanded="true" height="76" name="KMeans" width="90" x="179" y="30"> <parameter key="k" value="3"/> </operator> <operator activated="true" class="singular_value_decomposition" compatibility="5.0.000" expanded="true" height="94" name="SVDReduction" width="90" x="715" y="30"/> <connect from_op="Retrieve" from_port="output" to_op="KMeans" to_port="example set"/> <connect from_op="KMeans" from_port="cluster model" to_port="result 4"/> <connect from_op="KMeans" from_port="clustered set" to_op="SVDReduction" to_port="example set input"/> <connect from_op="SVDReduction" from_port="example set output" to_port="result 1"/> <connect from_op="SVDReduction" from_port="original" to_port="result 2"/> <connect from_op="SVDReduction" from_port="preprocessing model" to_port="result 3"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> <portSpacing port="sink_result 4" spacing="126"/> <portSpacing port="sink_result 5" spacing="0"/> </process> </operator></process>
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.1.003"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="5.1.003" expanded="true" name="Root"> <description><p>In many cases, no target attribute (label) can be defined and the data should be automatically grouped. This procedure is called &quot;Clustering&quot;. RapidMiner supports a wide range of clustering schemes which can be used in just the same way like any other learning scheme. This includes the combination with all preprocessing operators. <p> <p> In this experimen, the well-known Iris data set is loaded (the label is loaded, too, but it is only used for visualization and comparison and not for building the clusters itself). One of the most simple clustering schemes, namely KMeans, is then applied to this data set. Afterwards, a dimensionality reduction is performed in order to better support the visualization of the data set in two dimensions. </p><p> Just perform the process and compare the clustering result with the original label (e.g. in the plot view of the example set). You can also visualize the cluster model itself. </p></description> <parameter key="logverbosity" value="warning"/> <process expanded="true" height="604" width="981"> <operator activated="true" class="retrieve" compatibility="5.1.003" expanded="true" height="60" name="Retrieve" width="90" x="44" y="31"> <parameter key="repository_entry" value="//Samples/data/Iris"/> </operator> <operator activated="true" class="normalize" compatibility="5.1.003" expanded="true" height="94" name="Normalize" width="90" x="45" y="120"> <parameter key="attribute_filter_type" value="subset"/> <parameter key="attribute" value="a1"/> <parameter key="attributes" value="a1|a2|a3"/> <parameter key="method" value="range transformation"/> </operator> <operator activated="true" class="k_means" compatibility="5.1.003" expanded="true" height="76" name="KMeans" width="90" x="45" y="255"> <parameter key="k" value="3"/> </operator> <operator activated="true" class="map_clustering_on_labels" compatibility="5.1.003" expanded="true" height="76" name="Map Clustering on Labels" width="90" x="45" y="345"/> <operator activated="true" class="performance" compatibility="5.1.003" expanded="true" height="76" name="Performance" width="90" x="246" y="255"/> <connect from_op="Retrieve" from_port="output" to_op="Normalize" to_port="example set input"/> <connect from_op="Normalize" from_port="example set output" to_op="KMeans" to_port="example set"/> <connect from_op="KMeans" from_port="cluster model" to_op="Map Clustering on Labels" to_port="cluster model"/> <connect from_op="KMeans" from_port="clustered set" to_op="Map Clustering on Labels" to_port="example set"/> <connect from_op="Map Clustering on Labels" from_port="example set" to_op="Performance" to_port="labelled data"/> <connect from_op="Performance" from_port="performance" to_port="result 1"/> <connect from_op="Performance" from_port="example set" to_port="result 2"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="126"/> </process> </operator></process>