I have an SVM cross-validation setup and I want to compare actual vs. predicted. Here's my setup:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.1.001">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="5.1.001" expanded="true" name="Process">
<parameter key="parallelize_main_process" value="true"/>
<process expanded="true" height="615" width="964">
<operator activated="true" class="retrieve" compatibility="5.1.001" expanded="true" height="60" name="Retrieve (2)" width="90" x="179" y="30">
<parameter key="repository_entry" value="//MLData/FirstData"/>
</operator>
<operator activated="true" class="set_role" compatibility="5.1.001" expanded="true" height="76" name="Set Role (2)" width="90" x="313" y="30">
<parameter key="name" value="RRVALC"/>
<parameter key="target_role" value="weight"/>
<list key="set_additional_roles">
<parameter key="RRVAL" value="label"/>
<parameter key="Date" value="weight"/>
</list>
</operator>
<operator activated="true" class="normalize" compatibility="5.1.001" expanded="true" height="94" name="Normalize" width="90" x="447" y="30"/>
<operator activated="true" class="parallel:optimize_parameters_evolutionary_parallel" compatibility="5.0.001" expanded="true" height="112" name="Optimize Parameters (Evolutionary)" width="90" x="581" y="30">
<list key="parameters">
<parameter key="SVM.gamma" value="[0.0;10]"/>
<parameter key="SVM.nu" value="[0.0;0.5]"/>
<parameter key="SVM.C" value="[0.1;1000]"/>
<parameter key="SVM.epsilon" value="[0;15]"/>
</list>
<parameter key="max_generations" value="100"/>
<parameter key="use_early_stopping" value="true"/>
<parameter key="population_size" value="150"/>
<parameter key="show_convergence_plot" value="true"/>
<parameter key="number_of_threads" value="4"/>
<process expanded="true" height="633" width="982">
<operator activated="true" class="x_validation" compatibility="5.1.001" expanded="true" height="112" name="Validation" width="90" x="179" y="30">
<parameter key="sampling_type" value="linear sampling"/>
<process expanded="true" height="633" width="466">
<operator activated="true" class="support_vector_machine_libsvm" compatibility="5.1.001" expanded="true" height="76" name="SVM" width="90" x="179" y="30">
<parameter key="svm_type" value="epsilon-SVR"/>
<parameter key="kernel_type" value="linear"/>
<parameter key="gamma" value="0.6941252541880046"/>
<parameter key="C" value="781.8619281790575"/>
<parameter key="nu" value="0.15322895785780577"/>
<parameter key="epsilon" value="0.9220968604674066"/>
<list key="class_weights"/>
<parameter key="calculate_confidences" value="true"/>
</operator>
<connect from_port="training" to_op="SVM" to_port="training set"/>
<connect from_op="SVM" from_port="model" to_port="model"/>
<portSpacing port="source_training" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true" height="633" width="466">
<operator activated="true" class="apply_model" compatibility="5.1.001" expanded="true" height="76" name="Apply Model" width="90" x="45" y="30">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance_regression" compatibility="5.1.001" expanded="true" height="76" name="Performance" width="90" x="246" y="30">
<parameter key="absolute_error" value="true"/>
<parameter key="relative_error" value="true"/>
</operator>
<connect from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance" from_port="performance" to_port="averagable 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_averagable 1" spacing="0"/>
<portSpacing port="sink_averagable 2" spacing="0"/>
</process>
</operator>
<connect from_port="input 1" to_op="Validation" to_port="training"/>
<connect from_op="Validation" from_port="averagable 1" to_port="performance"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="source_input 2" spacing="0"/>
<portSpacing port="sink_performance" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
</process>
</operator>
<connect from_op="Retrieve (2)" from_port="output" to_op="Set Role (2)" to_port="example set input"/>
<connect from_op="Set Role (2)" from_port="example set output" to_op="Normalize" to_port="example set input"/>
<connect from_op="Normalize" from_port="example set output" to_op="Optimize Parameters (Evolutionary)" to_port="input 1"/>
<connect from_op="Optimize Parameters (Evolutionary)" from_port="performance" to_port="result 1"/>
<connect from_op="Optimize Parameters (Evolutionary)" from_port="result 1" to_port="result 2"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
</process>
</operator>
</process>
How do I get an example table of training data + predictions so that I can view / plot?