"R model error"

RLynx
RLynx New Altair Community Member
edited November 2024 in Community Q&A
Why do I get this error? Thank you.

Nov 2, 2010 5:25:40 PM INFO: Saved process definition at '//Repository/57459910/57459910_experimentR 2'.
Nov 2, 2010 5:25:40 PM INFO: No filename given for result file, using stdout for logging results!
Nov 2, 2010 5:25:40 PM INFO: Loading initial data.
Nov 2, 2010 5:25:40 PM INFO: Process //Repository/57459910/57459910_experimentR 2 starts
Nov 2, 2010 5:25:40 PM WARNING: Using deprecated example set stream version 1
Nov 2, 2010 5:25:40 PM SEVERE: Naive Bayes: Warning in prep.data(TRUE, data, target, excluded, prep.ctrl) :
  Empty levels were dropped from class col.: Iris-virginica

Nov 2, 2010 5:25:41 PM SEVERE: Process failed: An error occurred while executing R.
Nov 2, 2010 5:25:41 PM SEVERE: Here:          Process[1] (Process)
          subprocess 'Main Process'
            +- Retrieve[1] (Retrieve)
            +- Validation[1] (Sliding Window Validation)
          subprocess 'Training'
                |  +- Decision Tree[0] (Decision Tree)
      ==>      |  +- Naive Bayes[1] (Naive Bayes)
          subprocess 'Testing'
                  +- Apply Model[0] (Apply Model)
                  +- Performance[0] (Performance)

-------------------------------------------------------------------------------------------------------------------

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.0">
  <context>
    <input/>
    <output/>
    <macros/>
  </context>
  <operator activated="true" class="process" compatibility="5.0.11" expanded="true" name="Process">
    <process expanded="true" height="522" width="549">
      <operator activated="true" class="retrieve" compatibility="5.0.11" expanded="true" height="60" name="Retrieve" width="90" x="155" y="205">
        <parameter key="repository_entry" value="//Samples/data/Iris"/>
      </operator>
      <operator activated="true" class="series:sliding_window_validation" compatibility="5.0.2" expanded="true" height="112" name="Validation" width="90" x="429" y="216">
        <parameter key="training_window_width" value="90"/>
        <parameter key="test_window_width" value="1"/>
        <parameter key="horizon" value="10"/>
        <parameter key="average_performances_only" value="false"/>
        <process expanded="true" height="522" width="346">
          <operator activated="false" class="decision_tree" compatibility="5.0.11" expanded="true" height="76" name="Decision Tree" width="90" x="179" y="255">
            <parameter key="criterion" value="gini_index"/>
          </operator>
          <operator activated="true" class="r:naive_bayes" compatibility="5.0.2" expanded="true" height="76" name="Naive Bayes" width="90" x="154" y="46"/>
          <connect from_port="training" to_op="Naive Bayes" to_port="training set"/>
          <connect from_op="Naive Bayes" from_port="model" to_port="model"/>
          <portSpacing port="source_training" spacing="0"/>
          <portSpacing port="sink_model" spacing="0"/>
          <portSpacing port="sink_through 1" spacing="0"/>
        </process>
        <process expanded="true" height="522" width="300">
          <operator activated="true" class="apply_model" compatibility="5.0.11" expanded="true" height="76" name="Apply Model" width="90" x="45" y="30">
            <list key="application_parameters"/>
          </operator>
          <operator activated="true" class="performance" compatibility="5.0.11" expanded="true" height="76" name="Performance" width="90" x="180" y="30"/>
          <connect from_port="model" to_op="Apply Model" to_port="model"/>
          <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
          <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
          <connect from_op="Performance" from_port="performance" to_port="averagable 1"/>
          <portSpacing port="source_model" spacing="0"/>
          <portSpacing port="source_test set" spacing="0"/>
          <portSpacing port="source_through 1" spacing="0"/>
          <portSpacing port="sink_averagable 1" spacing="0"/>
          <portSpacing port="sink_averagable 2" spacing="0"/>
        </process>
      </operator>
      <connect from_op="Retrieve" from_port="output" to_op="Validation" to_port="training"/>
      <connect from_op="Validation" from_port="averagable 1" to_port="result 1"/>
      <portSpacing port="source_input 1" spacing="0"/>
      <portSpacing port="sink_result 1" spacing="0"/>
      <portSpacing port="sink_result 2" spacing="0"/>
    </process>
  </operator>
</process>
Tagged:

Welcome!

It looks like you're new here. Sign in or register to get started.

Answers

  • RLynx
    RLynx New Altair Community Member
    Any ideas? I got stuck here.. Thank you in advance, again.
  • land
    land New Altair Community Member
    Hi,
    your actual problem does not derive from the R-NaiveBayes but instead from using the SlidingWindow Validation that is made for time series, while you don't have a time series.
    Just exchange it by a normal cross-validation and everything should run fine.

    Greetings,
      Sebastian
  • RLynx
    RLynx New Altair Community Member
    Thank you for your reply. But.. original data that I use for my experiments (and it's not Iris data) requires Sliding Window Validation. Iris data here is just an example to show what kind of error I get with my original data.
    All non-R classification operators work perfectly fine with Sliding Windows Validation and Iris data. Check Decision Tree for example. Problem here is only with R operators.     
  • land
    land New Altair Community Member
    Hi,
    ok, then unfortunately you will have to a problem until we solve it in the extension. You can use the NaiveBayes operator instead, this should work...

    Greetings,
      Sebastian

Welcome!

It looks like you're new here. Sign in or register to get started.

Welcome!

It looks like you're new here. Sign in or register to get started.