A program to recognize and reward our most engaged community members
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.0"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="5.0.10" expanded="true" name="Process"> <process expanded="true" height="314" width="748"> <operator activated="true" class="generate_data" compatibility="5.0.8" expanded="true" height="60" name="Generate Data" width="90" x="45" y="30"/> <operator activated="true" class="multiply" compatibility="5.0.8" expanded="true" height="94" name="Multiply" width="90" x="179" y="30"/> <operator activated="true" class="execute_script" compatibility="5.0.8" expanded="true" height="76" name="Execute Script" width="90" x="380" y="30"> <parameter key="script" value="import com.rapidminer.operator.learner.functions.LinearRegressionModel;		 ExampleSet exampleSet = input[0]; 		int numberOfAttributes = exampleSet.getAttributes().size(); 		boolean[] attributeSelection = new boolean[numberOfAttributes]; 		Arrays.fill(attributeSelection, true); 		// data just used for information. If not available could be left zero 		double[] standardErrors = new double[numberOfAttributes]; 		double[] standardizedCoefficients = new double[numberOfAttributes]; 		double[] tStatistics = new double[numberOfAttributes]; 		double[] pValues = new double[numberOfAttributes]; 		 		// data for calculating results 		double[] coefficients = new double[numberOfAttributes + 1]; 		// entering all coefficients you want to set > 0. Last coefficient is bias. 		coefficients[0] = 1; 		// bias 		coefficients[coefficients.length - 1] = 5; 		 		// class names might be null if regression task is performed 		String firstClassName = null; 		String secondClassName = null; 		 		return(new LinearRegressionModel(exampleSet, attributeSelection, coefficients, standardErrors, standardizedCoefficients, tStatistics, pValues, true, firstClassName, secondClassName));		 "/> </operator> <operator activated="true" class="apply_model" compatibility="5.0.8" expanded="true" height="76" name="Apply Model" width="90" x="447" y="165"> <list key="application_parameters"/> </operator> <connect from_op="Generate Data" from_port="output" to_op="Multiply" to_port="input"/> <connect from_op="Multiply" from_port="output 1" to_op="Execute Script" to_port="input 1"/> <connect from_op="Multiply" from_port="output 2" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Execute Script" from_port="output 1" to_op="Apply Model" to_port="model"/> <connect from_op="Apply Model" from_port="labelled data" to_port="result 1"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> </process> </operator></process>