A program to recognize and reward our most engaged community members
then once a region is deterimined use a tighter grid. Is this correct?
<?xml version="1.0" encoding="UTF-8" standalone="no"?><process version="5.0"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" expanded="true" name="Process"> <process expanded="true" height="418" width="433"> <operator activated="true" class="read_csv" expanded="true" height="60" name="Read CSV" width="90" x="49" y="28"> <parameter key="file_name" value="C:\Projects\RM5\timeseries\data\daily_sap.csv"/> </operator> <operator activated="true" class="set_role" expanded="true" height="76" name="Set Role" width="90" x="182" y="16"> <parameter key="name" value="label"/> <parameter key="target_role" value="label"/> </operator> <operator activated="true" class="series:windowing" expanded="true" height="76" name="Windowing" width="90" x="112" y="165"> <parameter key="horizon" value="1"/> <parameter key="window_size" value="20"/> <parameter key="create_label" value="true"/> <parameter key="label_attribute" value="label"/> </operator> <operator activated="true" class="set_role" expanded="true" height="76" name="Set Role (2)" width="90" x="45" y="120"/> <operator activated="true" class="series:sliding_window_validation" expanded="true" height="112" name="Validation" width="90" x="246" y="165"> <parameter key="training_window_width" value="400"/> <parameter key="training_window_step_size" value="200"/> <parameter key="test_window_width" value="50"/> <process expanded="true" height="400" width="172"> <operator activated="true" class="support_vector_machine" expanded="true" height="112" name="JMySVMLearner" width="90" x="45" y="75"> <parameter key="C" value="1.0"/> </operator> <connect from_port="training" to_op="JMySVMLearner" to_port="training set"/> <connect from_op="JMySVMLearner" from_port="model" to_port="model"/> <portSpacing port="source_training" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true" height="400" width="172"> <operator activated="true" class="apply_model" expanded="true" height="76" name="Apply Model" width="90" x="47" y="147"> <list key="application_parameters"/> </operator> <operator activated="true" class="performance" expanded="true" height="76" name="Performance" width="90" x="76" y="337"/> <operator activated="false" class="performance_regression" expanded="true" height="76" name="RegressionPerformance" width="90" x="26" y="260"> <parameter key="absolute_error" value="true"/> <parameter key="relative_error" value="true"/> <parameter key="root_relative_squared_error" value="true"/> </operator> <connect from_port="model" to_op="Apply Model" to_port="model"/> <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/> <connect from_op="Performance" from_port="performance" to_port="averagable 1"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_averagable 1" spacing="0"/> <portSpacing port="sink_averagable 2" spacing="0"/> </process> </operator> <connect from_op="Read CSV" from_port="output" to_op="Set Role" to_port="example set input"/> <connect from_op="Set Role" from_port="example set output" to_op="Windowing" to_port="example set input"/> <connect from_op="Windowing" from_port="example set output" to_op="Validation" to_port="training"/> <connect from_op="Validation" from_port="model" to_port="result 2"/> <connect from_op="Validation" from_port="training" to_port="result 3"/> <connect from_op="Validation" from_port="averagable 1" to_port="result 1"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="0"/> <portSpacing port="sink_result 3" spacing="0"/> <portSpacing port="sink_result 4" spacing="0"/> </process> </operator></process>
Thanks for the response and congratulations on the nomination for the dissertation award.
The problem I think I have is it seems every data point becomes a support vector, which leads me to believe the model memorizes the data instead of learning any patterns. I have tried adding an optimize parameter operator both a grid and evolutionary to adjust the window size, and the kernel type, c and epsilon value.
I then plan to add inputs, several papers suggest moving averages of different lengths and wavelet transformation, and Ralf Klinkenberg suggested using Fourier transformation.