Find more posts tagged with
Sort by:
1 - 4 of
41
Using RM 4.5 and using the SVM/Xval example in the tutorial if you do the analysis:
<operator name="Root" class="Process" expanded="yes">
<operator name="Input" class="ExampleSource">
<parameter key="attributes" value="../data/polynomial.aml"/>
</operator>
<operator name="XVal" class="XValidation" expanded="yes">
<parameter key="sampling_type" value="shuffled sampling"/>
<operator name="Training" class="LibSVMLearner">
<parameter key="svm_type" value="epsilon-SVR"/>
<parameter key="kernel_type" value="poly"/>
<parameter key="C" value="1000.0"/>
<list key="class_weights">
</list>
</operator>
<operator name="ApplierChain" class="OperatorChain" expanded="yes">
<operator name="Test" class="ModelApplier">
<list key="application_parameters">
</list>
</operator>
<operator name="Evaluation" class="RegressionPerformance">
<parameter key="root_mean_squared_error" value="true"/>
<parameter key="absolute_error" value="true"/>
<parameter key="relative_error" value="true"/>
<parameter key="normalized_absolute_error" value="true"/>
<parameter key="root_relative_squared_error" value="true"/>
<parameter key="squared_error" value="true"/>
<parameter key="correlation" value="true"/>
</operator>
</operator>
</operator>
</operator>
if you save the performance file *.per you get this;
<object-stream>
<PerformanceVector id="1">
<currentValues id="2">
<entry>
<string>root_mean_squared_error</string>
<double>7.271397088254498</double>
</entry>
<entry>
<string>relative_error</string>
<double>0.4261726449515895</double>
</entry>
<entry>
<string>correlation</string>
<double>0.9990774750706919</double>
</entry>
<entry>
<string>normalized_absolute_error</string>
<double>0.04030556352101554</double>
</entry>
<entry>
<string>absolute_error</string>
<double>5.107471175794692</double>
</entry>
<entry>
<string>squared_error</string>
<double>54.826375982674925</double>
</entry>
<entry>
<string>root_relative_squared_error</string>
<double>0.04407058437419177</double>
</entry>
</currentValues>
<comparator class="com.rapidminer.operator.performance.PerformanceVector$DefaultComparator" id="3"/>
<mainCriterion>first</mainCriterion>
<averagesList id="4">
<root__mean__squared__error id="5">
<sum>10965.275196534985</sum>
<squaresSum>3960036.9527361454</squaresSum>
<exampleCount>200.0</exampleCount>
<predictedAttribute class="NumericalAttribute" id="6">
<attributeDescription id="7">
<name>prediction(label)</name>
<valueType>4</valueType>
<blockType>1</blockType>
<defaultValue>0.0</defaultValue>
<index>6</index>
</attributeDescription>
<transformations id="8"/>
<statistics class="linked-list" id="9">
<NumericalStatistics id="10">
<sum>0.0</sum>
<squaredSum>0.0</squaredSum>
<valueCounter>0</valueCounter>
</NumericalStatistics>
<WeightedNumericalStatistics id="11">
<sum>0.0</sum>
<squaredSum>0.0</squaredSum>
<totalWeight>0.0</totalWeight>
<count>0.0</count>
</WeightedNumericalStatistics>
<com.rapidminer.example.MinMaxStatistics id="12">
<minimum>Infinity</minimum>
<maximum>-Infinity</maximum>
</com.rapidminer.example.MinMaxStatistics>
<UnknownStatistics id="13">
<unknownCounter>0</unknownCounter>
</UnknownStatistics>
</statistics>
<constructionDescription>prediction(label)</constructionDescription>
</predictedAttribute>
<labelAttribute class="NumericalAttribute" id="14">
<attributeDescription id="15">
<name>label</name>
<valueType>4</valueType>
<blockType>1</blockType>
<defaultValue>0.0</defaultValue>
<index>5</index>
</attributeDescription>
<transformations id="16"/>
<statistics class="linked-list" id="17">
<NumericalStatistics id="18">
<sum>0.0</sum>
<squaredSum>0.0</squaredSum>
<valueCounter>0</valueCounter>
</NumericalStatistics>
<WeightedNumericalStatistics id="19">
<sum>0.0</sum>
<squaredSum>0.0</squaredSum>
<totalWeight>0.0</totalWeight>
<count>0.0</count>
</WeightedNumericalStatistics>
<com.rapidminer.example.MinMaxStatistics id="20">
<minimum>Infinity</minimum>
<maximum>-Infinity</maximum>
</com.rapidminer.example.MinMaxStatistics>
<UnknownStatistics id="21">
<unknownCounter>0</unknownCounter>
</UnknownStatistics>
</statistics>
<constructionDescription>label</constructionDescription>
</labelAttribute>
<meanSum>72.71397088254498</meanSum>
<meanSquaredSum>548.2637598267493</meanSquaredSum>
<averageCount>10</averageCount>
</root__mean__squared__error>
<absolute__error id="22">
<sum>1021.4942351589382</sum>
<squaresSum>10965.275196534985</squaresSum>
<exampleCount>200.0</exampleCount>
<predictedAttribute class="NumericalAttribute" reference="6"/>
<labelAttribute class="NumericalAttribute" reference="14"/>
<meanSum>51.07471175794692</meanSum>
<meanSquaredSum>269.8618246507336</meanSquaredSum>
<averageCount>10</averageCount>
</absolute__error>
<relative__error id="23">
<sum>85.2345289903179</sum>
<squaresSum>1012.762540663155</squaresSum>
<exampleCount>200.0</exampleCount>
<predictedAttribute class="NumericalAttribute" reference="6"/>
<labelAttribute class="NumericalAttribute" reference="14"/>
<meanSum>4.261726449515895</meanSum>
<meanSquaredSum>3.142985588188072</meanSquaredSum>
<averageCount>10</averageCount>
</relative__error>
<normalized__absolute__error id="24">
<predictedAttribute class="NumericalAttribute" reference="6"/>
<labelAttribute class="NumericalAttribute" reference="14"/>
<deviationSum>1021.4942351589382</deviationSum>
<relativeSum>27075.057565148352</relativeSum>
<trueLabelSum>4078.1396808612185</trueLabelSum>
<exampleCounter>20.0</exampleCounter>
<meanSum>0.40305563521015536</meanSum>
<meanSquaredSum>0.018255354969483512</meanSquaredSum>
<averageCount>10</averageCount>
</normalized__absolute__error>
<root__relative__squared__error id="25">
<predictedAttribute class="NumericalAttribute" reference="6"/>
<labelAttribute class="NumericalAttribute" reference="14"/>
<deviationSum>10965.275196534985</deviationSum>
<relativeSum>6475981.792977156</relativeSum>
<trueLabelSum>4078.1396808612185</trueLabelSum>
<exampleCounter>20.0</exampleCounter>
<meanSum>0.4407058437419177</meanSum>
<meanSquaredSum>0.021258629086615133</meanSquaredSum>
<averageCount>10</averageCount>
</root__relative__squared__error>
<squared__error id="26">
<sum>10965.275196534985</sum>
<squaresSum>3960036.9527361454</squaresSum>
<exampleCount>200.0</exampleCount>
<predictedAttribute class="NumericalAttribute" reference="6"/>
<labelAttribute class="NumericalAttribute" reference="14"/>
<meanSum>548.2637598267493</meanSum>
<meanSquaredSum>34173.58564301037</meanSquaredSum>
<averageCount>10</averageCount>
</squared__error>
<correlation id="27">
<labelAttribute class="NumericalAttribute" reference="14"/>
<predictedLabelAttribute class="NumericalAttribute" reference="6"/>
<exampleCount>200.0</exampleCount>
<sumLabel>36083.680010339376</sumLabel>
<sumPredict>36280.64884722099</sumPredict>
<sumLabelPredict>1.3344662294616919E7</sumLabelPredict>
<sumLabelSqr>1.3277723556890765E7</sumLabelSqr>
<sumPredictSqr>1.34225663075396E7</sumPredictSqr>
<meanSum>9.990774750706919</meanSum>
<meanSquaredSum>9.981562312225481</meanSquaredSum>
<averageCount>10</averageCount>
</correlation>
</averagesList>
<source>Evaluation</source>
</PerformanceVector>
as you see you are missing the "</object-stream>" tag. This is also the same for the *.RES files too
Stuart
<operator name="Root" class="Process" expanded="yes">
<operator name="Input" class="ExampleSource">
<parameter key="attributes" value="../data/polynomial.aml"/>
</operator>
<operator name="XVal" class="XValidation" expanded="yes">
<parameter key="sampling_type" value="shuffled sampling"/>
<operator name="Training" class="LibSVMLearner">
<parameter key="svm_type" value="epsilon-SVR"/>
<parameter key="kernel_type" value="poly"/>
<parameter key="C" value="1000.0"/>
<list key="class_weights">
</list>
</operator>
<operator name="ApplierChain" class="OperatorChain" expanded="yes">
<operator name="Test" class="ModelApplier">
<list key="application_parameters">
</list>
</operator>
<operator name="Evaluation" class="RegressionPerformance">
<parameter key="root_mean_squared_error" value="true"/>
<parameter key="absolute_error" value="true"/>
<parameter key="relative_error" value="true"/>
<parameter key="normalized_absolute_error" value="true"/>
<parameter key="root_relative_squared_error" value="true"/>
<parameter key="squared_error" value="true"/>
<parameter key="correlation" value="true"/>
</operator>
</operator>
</operator>
</operator>
if you save the performance file *.per you get this;
<object-stream>
<PerformanceVector id="1">
<currentValues id="2">
<entry>
<string>root_mean_squared_error</string>
<double>7.271397088254498</double>
</entry>
<entry>
<string>relative_error</string>
<double>0.4261726449515895</double>
</entry>
<entry>
<string>correlation</string>
<double>0.9990774750706919</double>
</entry>
<entry>
<string>normalized_absolute_error</string>
<double>0.04030556352101554</double>
</entry>
<entry>
<string>absolute_error</string>
<double>5.107471175794692</double>
</entry>
<entry>
<string>squared_error</string>
<double>54.826375982674925</double>
</entry>
<entry>
<string>root_relative_squared_error</string>
<double>0.04407058437419177</double>
</entry>
</currentValues>
<comparator class="com.rapidminer.operator.performance.PerformanceVector$DefaultComparator" id="3"/>
<mainCriterion>first</mainCriterion>
<averagesList id="4">
<root__mean__squared__error id="5">
<sum>10965.275196534985</sum>
<squaresSum>3960036.9527361454</squaresSum>
<exampleCount>200.0</exampleCount>
<predictedAttribute class="NumericalAttribute" id="6">
<attributeDescription id="7">
<name>prediction(label)</name>
<valueType>4</valueType>
<blockType>1</blockType>
<defaultValue>0.0</defaultValue>
<index>6</index>
</attributeDescription>
<transformations id="8"/>
<statistics class="linked-list" id="9">
<NumericalStatistics id="10">
<sum>0.0</sum>
<squaredSum>0.0</squaredSum>
<valueCounter>0</valueCounter>
</NumericalStatistics>
<WeightedNumericalStatistics id="11">
<sum>0.0</sum>
<squaredSum>0.0</squaredSum>
<totalWeight>0.0</totalWeight>
<count>0.0</count>
</WeightedNumericalStatistics>
<com.rapidminer.example.MinMaxStatistics id="12">
<minimum>Infinity</minimum>
<maximum>-Infinity</maximum>
</com.rapidminer.example.MinMaxStatistics>
<UnknownStatistics id="13">
<unknownCounter>0</unknownCounter>
</UnknownStatistics>
</statistics>
<constructionDescription>prediction(label)</constructionDescription>
</predictedAttribute>
<labelAttribute class="NumericalAttribute" id="14">
<attributeDescription id="15">
<name>label</name>
<valueType>4</valueType>
<blockType>1</blockType>
<defaultValue>0.0</defaultValue>
<index>5</index>
</attributeDescription>
<transformations id="16"/>
<statistics class="linked-list" id="17">
<NumericalStatistics id="18">
<sum>0.0</sum>
<squaredSum>0.0</squaredSum>
<valueCounter>0</valueCounter>
</NumericalStatistics>
<WeightedNumericalStatistics id="19">
<sum>0.0</sum>
<squaredSum>0.0</squaredSum>
<totalWeight>0.0</totalWeight>
<count>0.0</count>
</WeightedNumericalStatistics>
<com.rapidminer.example.MinMaxStatistics id="20">
<minimum>Infinity</minimum>
<maximum>-Infinity</maximum>
</com.rapidminer.example.MinMaxStatistics>
<UnknownStatistics id="21">
<unknownCounter>0</unknownCounter>
</UnknownStatistics>
</statistics>
<constructionDescription>label</constructionDescription>
</labelAttribute>
<meanSum>72.71397088254498</meanSum>
<meanSquaredSum>548.2637598267493</meanSquaredSum>
<averageCount>10</averageCount>
</root__mean__squared__error>
<absolute__error id="22">
<sum>1021.4942351589382</sum>
<squaresSum>10965.275196534985</squaresSum>
<exampleCount>200.0</exampleCount>
<predictedAttribute class="NumericalAttribute" reference="6"/>
<labelAttribute class="NumericalAttribute" reference="14"/>
<meanSum>51.07471175794692</meanSum>
<meanSquaredSum>269.8618246507336</meanSquaredSum>
<averageCount>10</averageCount>
</absolute__error>
<relative__error id="23">
<sum>85.2345289903179</sum>
<squaresSum>1012.762540663155</squaresSum>
<exampleCount>200.0</exampleCount>
<predictedAttribute class="NumericalAttribute" reference="6"/>
<labelAttribute class="NumericalAttribute" reference="14"/>
<meanSum>4.261726449515895</meanSum>
<meanSquaredSum>3.142985588188072</meanSquaredSum>
<averageCount>10</averageCount>
</relative__error>
<normalized__absolute__error id="24">
<predictedAttribute class="NumericalAttribute" reference="6"/>
<labelAttribute class="NumericalAttribute" reference="14"/>
<deviationSum>1021.4942351589382</deviationSum>
<relativeSum>27075.057565148352</relativeSum>
<trueLabelSum>4078.1396808612185</trueLabelSum>
<exampleCounter>20.0</exampleCounter>
<meanSum>0.40305563521015536</meanSum>
<meanSquaredSum>0.018255354969483512</meanSquaredSum>
<averageCount>10</averageCount>
</normalized__absolute__error>
<root__relative__squared__error id="25">
<predictedAttribute class="NumericalAttribute" reference="6"/>
<labelAttribute class="NumericalAttribute" reference="14"/>
<deviationSum>10965.275196534985</deviationSum>
<relativeSum>6475981.792977156</relativeSum>
<trueLabelSum>4078.1396808612185</trueLabelSum>
<exampleCounter>20.0</exampleCounter>
<meanSum>0.4407058437419177</meanSum>
<meanSquaredSum>0.021258629086615133</meanSquaredSum>
<averageCount>10</averageCount>
</root__relative__squared__error>
<squared__error id="26">
<sum>10965.275196534985</sum>
<squaresSum>3960036.9527361454</squaresSum>
<exampleCount>200.0</exampleCount>
<predictedAttribute class="NumericalAttribute" reference="6"/>
<labelAttribute class="NumericalAttribute" reference="14"/>
<meanSum>548.2637598267493</meanSum>
<meanSquaredSum>34173.58564301037</meanSquaredSum>
<averageCount>10</averageCount>
</squared__error>
<correlation id="27">
<labelAttribute class="NumericalAttribute" reference="14"/>
<predictedLabelAttribute class="NumericalAttribute" reference="6"/>
<exampleCount>200.0</exampleCount>
<sumLabel>36083.680010339376</sumLabel>
<sumPredict>36280.64884722099</sumPredict>
<sumLabelPredict>1.3344662294616919E7</sumLabelPredict>
<sumLabelSqr>1.3277723556890765E7</sumLabelSqr>
<sumPredictSqr>1.34225663075396E7</sumPredictSqr>
<meanSum>9.990774750706919</meanSum>
<meanSquaredSum>9.981562312225481</meanSquaredSum>
<averageCount>10</averageCount>
</correlation>
</averagesList>
<source>Evaluation</source>
</PerformanceVector>
as you see you are missing the "</object-stream>" tag. This is also the same for the *.RES files too
Stuart
Confirmed. However, that does not prevent RM from reading the file back in, does it? At least not for me.
This is in fact a problem with xstream. It was simple to fix from our side, although I think this is a flaw in the implementation of xstream. It requires us to close the stream after every object which now prevents us to send several XML streams in a row.
Cheers,
Simon
This is in fact a problem with xstream. It was simple to fix from our side, although I think this is a flaw in the implementation of xstream. It requires us to close the stream after every object which now prevents us to send several XML streams in a row.
Cheers,
Simon
Cheers,
Simon