How to nest/compare multiple learners?
delen
New Altair Community Member
I want to nest and compare 3 different learners such as ANN, DT and LR for a classification task. I want to use 10-fold CV. How can I do that? Do I need to do the XValidation separately for each algorithm, or is there a way to nest them into a meta block?
Thanks,
Delen
Thanks,
Delen
Tagged:
0
Answers
-
Hi,
you can combine the operator OperatorSelector with a parameter iteration like in the following process:
Cheers,
<operator name="Root" class="Process" expanded="yes">
<operator name="ExampleSetGenerator" class="ExampleSetGenerator">
<parameter key="target_function" value="sum classification"/>
</operator>
<operator name="ParameterIteration" class="ParameterIteration" expanded="yes">
<list key="parameters">
<parameter key="OperatorSelector.select_which" value="[1.0;3.0;2;linear]"/>
</list>
<parameter key="keep_output" value="true"/>
<operator name="XValidation" class="XValidation" expanded="yes">
<operator name="OperatorSelector" class="OperatorSelector" expanded="yes">
<parameter key="select_which" value="3"/>
<operator name="DecisionTree" class="DecisionTree">
</operator>
<operator name="LinearRegression" class="LinearRegression">
</operator>
<operator name="JMySVMLearner" class="JMySVMLearner">
</operator>
</operator>
<operator name="OperatorChain" class="OperatorChain" expanded="yes">
<operator name="ModelApplier" class="ModelApplier">
<list key="application_parameters">
</list>
</operator>
<operator name="Performance" class="Performance">
</operator>
</operator>
</operator>
</operator>
</operator>
Ingo0