Dear all,
I've managed to set up the first working RM chain for feature evaluation -
At least I think so, because I see the following error message on the console:
G Feb 4, 2009 9:15:11 AM: [Warning] Cannot generate test attribute: No such attribute: corr. We just keep both attributes fo
r sure...
Last message repeated 2 times.
The chain looks as follows:
<?xml version="1.0" encoding="US-ASCII"?>
<process version="4.3">
<operator name="Root" class="Process" expanded="yes">
<operator name="Data Source" class="ArffExampleSource">
<parameter key="data_file" value="all_subjects.arff"/>
<parameter key="id_attribute" value="id"/>
<parameter key="label_attribute" value="label"/>
</operator>
<operator name="YAGGA2" class="YAGGA2" expanded="yes">
<parameter key="use_diff" value="true"/>
<parameter key="use_max" value="true"/>
<parameter key="use_min" value="true"/>
<parameter key="use_sin" value="false"/>
<parameter key="use_square_roots" value="true"/>
<operator name="SimpleValidation" class="SimpleValidation" expanded="yes">
<parameter key="create_complete_model" value="true"/>
<operator name="DecisionTree" class="DecisionTree">
<parameter key="criterion" value="gini_index"/>
<parameter key="maximal_depth" value="5"/>
</operator>
<operator name="Applier Chain" class="OperatorChain" expanded="yes">
<operator name="Test" class="ModelApplier">
<list key="application_parameters">
</list>
<parameter key="keep_model" value="true"/>
</operator>
<operator name="ClassificationPerformance" class="ClassificationPerformance">
<parameter key="keep_example_set" value="true"/>
<parameter key="root_mean_squared_error" value="true"/>
<parameter key="root_relative_squared_error" value="true"/>
<parameter key="weighted_mean_precision" value="true"/>
<parameter key="weighted_mean_recall" value="true"/>
</operator>
</operator>
</operator>
<operator name="ProcessLog" class="ProcessLog">
<parameter key="filename" value="process_log.txt"/>
<list key="log">
<parameter key="Generation" value="operator.YAGGA2.value.generation"/>
<parameter key="Recall" value="operator.ClassificationPerformance.value.weighted_mean_recall"/>
<parameter key="Precision" value="operator.ClassificationPerformance.value.weighted_mean_precision"/>
</list>
</operator>
</operator>
<operator name="AttributeWeightsWriter" class="AttributeWeightsWriter">
<parameter key="attribute_weights_file" value="attribute.wgt"/>
</operator>
<operator name="PerformanceWriter" class="PerformanceWriter">
<parameter key="performance_file" value="performance.per"/>
</operator>
<operator name="AttributeConstructionsWriter" class="AttributeConstructionsWriter">
<parameter key="attribute_constructions_file" value="attribute.cst"/>
</operator>
</operator>
</process>
Can anybody explain to me why this error occurs, what it means, how to fix it (if possible) and in general if the above
scheme makes sense at all? I'd highly appreciate to hear from your experience and concerning how to improve the above process.
Thank you very much and best regards!