How make Hybrid Model in Rapid-miner ?

New Altair Community Member
Updated by Jocelyn
Suppose I want to Combine or make a hybrid model of KNN and Decision Tree model together, Could anyone tell me how to do this?
Regards
Regards
Find more posts tagged with
Sort by:
1 - 5 of
51
Hi @MunchCrunch19,
You can find here a process which implements a Vote operator with both SVM and Neural Net models :
Regards,
Lionel
You can find here a process which implements a Vote operator with both SVM and Neural Net models :
<?xml version="1.0" encoding="UTF-8"?><process version="9.5.000"> <context> <input/> <output/> <macros/> </context> <operator activated="true" class="process" compatibility="9.4.000" expanded="true" name="Process" origin="GENERATED_TUTORIAL"> <parameter key="logverbosity" value="init"/> <parameter key="random_seed" value="2001"/> <parameter key="send_mail" value="never"/> <parameter key="notification_email" value=""/> <parameter key="process_duration_for_mail" value="30"/> <parameter key="encoding" value="SYSTEM"/> <process expanded="true"> <operator activated="true" class="retrieve" compatibility="9.5.000" expanded="true" height="68" name="Sonar" origin="GENERATED_TUTORIAL" width="90" x="45" y="34"> <parameter key="repository_entry" value="//Samples/data/Sonar"/> </operator> <operator activated="true" class="split_validation" compatibility="9.5.000" expanded="true" height="124" name="Validation" origin="GENERATED_TUTORIAL" width="90" x="246" y="34"> <parameter key="create_complete_model" value="false"/> <parameter key="split" value="relative"/> <parameter key="split_ratio" value="0.7"/> <parameter key="training_set_size" value="100"/> <parameter key="test_set_size" value="-1"/> <parameter key="sampling_type" value="automatic"/> <parameter key="use_local_random_seed" value="false"/> <parameter key="local_random_seed" value="1992"/> <process expanded="true"> <operator activated="true" class="vote" compatibility="9.5.000" expanded="true" height="68" name="Vote" origin="GENERATED_TUTORIAL" width="90" x="112" y="34"> <process expanded="true"> <operator activated="true" class="neural_net" compatibility="9.5.000" expanded="true" height="82" name="Neural Net" origin="GENERATED_TUTORIAL" width="90" x="313" y="187"> <list key="hidden_layers"/> <parameter key="training_cycles" value="500"/> <parameter key="learning_rate" value="0.3"/> <parameter key="momentum" value="0.2"/> <parameter key="decay" value="false"/> <parameter key="shuffle" value="true"/> <parameter key="normalize" value="true"/> <parameter key="error_epsilon" value="1.0E-5"/> <parameter key="use_local_random_seed" value="false"/> <parameter key="local_random_seed" value="1992"/> </operator> <operator activated="true" class="support_vector_machine" compatibility="9.5.000" expanded="true" height="124" name="SVM" origin="GENERATED_TUTORIAL" width="90" x="313" y="289"> <parameter key="kernel_type" value="dot"/> <parameter key="kernel_gamma" value="1.0"/> <parameter key="kernel_sigma1" value="1.0"/> <parameter key="kernel_sigma2" value="0.0"/> <parameter key="kernel_sigma3" value="2.0"/> <parameter key="kernel_shift" value="1.0"/> <parameter key="kernel_degree" value="2.0"/> <parameter key="kernel_a" value="1.0"/> <parameter key="kernel_b" value="0.0"/> <parameter key="kernel_cache" value="200"/> <parameter key="C" value="0.0"/> <parameter key="convergence_epsilon" value="0.001"/> <parameter key="max_iterations" value="100000"/> <parameter key="scale" value="true"/> <parameter key="calculate_weights" value="true"/> <parameter key="return_optimization_performance" value="true"/> <parameter key="L_pos" value="1.0"/> <parameter key="L_neg" value="1.0"/> <parameter key="epsilon" value="0.0"/> <parameter key="epsilon_plus" value="0.0"/> <parameter key="epsilon_minus" value="0.0"/> <parameter key="balance_cost" value="false"/> <parameter key="quadratic_loss_pos" value="false"/> <parameter key="quadratic_loss_neg" value="false"/> <parameter key="estimate_performance" value="false"/> </operator> <connect from_port="training set 1" to_op="Neural Net" to_port="training set"/> <connect from_port="training set 2" to_op="SVM" to_port="training set"/> <connect from_op="Neural Net" from_port="model" to_port="base model 1"/> <connect from_op="SVM" from_port="model" to_port="base model 2"/> <portSpacing port="source_training set 1" spacing="72"/> <portSpacing port="source_training set 2" spacing="72"/> <portSpacing port="source_training set 3" spacing="0"/> <portSpacing port="sink_base model 1" spacing="72"/> <portSpacing port="sink_base model 2" spacing="72"/> <portSpacing port="sink_base model 3" spacing="0"/> </process> </operator> <connect from_port="training" to_op="Vote" to_port="training set"/> <connect from_op="Vote" from_port="model" to_port="model"/> <portSpacing port="source_training" spacing="0"/> <portSpacing port="sink_model" spacing="0"/> <portSpacing port="sink_through 1" spacing="0"/> </process> <process expanded="true"> <operator activated="true" class="apply_model" compatibility="9.5.000" expanded="true" height="82" name="Apply Model" origin="GENERATED_TUTORIAL" width="90" x="45" y="34"> <list key="application_parameters"/> <parameter key="create_view" value="false"/> </operator> <operator activated="true" class="performance" compatibility="9.5.000" expanded="true" height="82" name="Performance" origin="GENERATED_TUTORIAL" width="90" x="179" y="34"> <parameter key="use_example_weights" value="true"/> </operator> <connect from_port="model" to_op="Apply Model" to_port="model"/> <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/> <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/> <connect from_op="Performance" from_port="performance" to_port="averagable 1"/> <portSpacing port="source_model" spacing="0"/> <portSpacing port="source_test set" spacing="0"/> <portSpacing port="source_through 1" spacing="0"/> <portSpacing port="sink_averagable 1" spacing="0"/> <portSpacing port="sink_averagable 2" spacing="0"/> </process> </operator> <connect from_op="Sonar" from_port="output" to_op="Validation" to_port="training"/> <connect from_op="Validation" from_port="model" to_port="result 1"/> <connect from_op="Validation" from_port="averagable 1" to_port="result 2"/> <portSpacing port="source_input 1" spacing="0"/> <portSpacing port="sink_result 1" spacing="0"/> <portSpacing port="sink_result 2" spacing="42"/> <portSpacing port="sink_result 3" spacing="66"/> </process> </operator> </process>
Regards,
Lionel
lionelderkrikor Sorry, should i copy the above code and paste it in Rapidminer? I am Beginner don't know about the process you shared.
Regards ,
Regards ,
you can use one of the ensemble model algorithms, available in Modeling/Predictive/Ensembles.
Some algorithms use the same model type, some allow you to define different algorithms, by putting them into the operator.
You could experiment with Vote and Stacking, these do what you describe.
Regards,
Balázs