"time series prediction"
Hi everyone
I am new user of RapidMiner and this is my first post, I have 11 months electric feeder load time series data so I want to forecast one day ahead feeder load with the help of this data.so can anyone guide me how can I do this with the help of RapidMiner ?
Data Format:-
date hour1 hour2 hour3 hour4 hour5 hour6 ......... hour24
10/01/2010 .2934 .1983 .1328 .2032 .1002 .1834 ......... .2903
10/02/2010 .2367 . 1298 .1289 .1901 .1192 .1920 ........ .1902
................. ................................................................................
280 days 24 hour
Thanks
Vikas Gupta
I am new user of RapidMiner and this is my first post, I have 11 months electric feeder load time series data so I want to forecast one day ahead feeder load with the help of this data.so can anyone guide me how can I do this with the help of RapidMiner ?

Data Format:-
date hour1 hour2 hour3 hour4 hour5 hour6 ......... hour24
10/01/2010 .2934 .1983 .1328 .2032 .1002 .1834 ......... .2903
10/02/2010 .2367 . 1298 .1289 .1901 .1192 .1920 ........ .1902
................. ................................................................................
280 days 24 hour
Thanks
Vikas Gupta
Find more posts tagged with
Sort by:
1 - 23 of
231
Actually I have no idea how to convert this data to 1 column, using rapidminer, so I'm gonna use VIM or python.
Like:
loaddata #<-- this is a comment
0.5144 #<-- first data point
0.5144
0.5144
0.6001
0.6001
0.6859
0.6859
0.7716
0.7716
1.286
1.286
1.286
1.2003
1.2003
1.2003
1.286
1.286
1.5432
1.8004
1.6289
1.5432
1.3717
1.1145
0.8573
0.9431 #<-- day 2
...
1.286 #<-- last data point, etc
edit:
okay here is the data I will be using:
Like:
loaddata #<-- this is a comment
0.5144 #<-- first data point
0.5144
0.5144
0.6001
0.6001
0.6859
0.6859
0.7716
0.7716
1.286
1.286
1.286
1.2003
1.2003
1.2003
1.286
1.286
1.5432
1.8004
1.6289
1.5432
1.3717
1.1145
0.8573
0.9431 #<-- day 2
...
1.286 #<-- last data point, etc
edit:
okay here is the data I will be using:
load
0.5144
0.5144
0.5144
0.6001
0.6001
0.6859
0.6859
0.7716
0.7716
1.286
1.286
1.286
1.2003
1.2003
1.2003
1.286
1.286
1.5432
1.8004
1.6289
1.5432
1.3717
1.1145
0.8573
0.9431
0.6859
0.6859
0.6859
0.7716
0.7716
0
0
0
1.6289
1.3717
1.3717
1.3717
0
1.5432
1.4575
1.4575
1.6289
1.8004
1.7147
1.5432
1.3717
1.1145
0.8573
0.7716
0.6859
0.6859
0.7716
0.9431
1.0288
2.0288
1.2003
1.286
1.286
1.4575
1.3717
1.3717
0
1.286
1.4575
1.5432
1.5432
1.8004
1.8004
1.5432
1.3717
1.2003
0.9431
0.8573
0.7716
0.7716
0.8573
0.8573
0.9431
1.0288
1.2003
1.286
1.3717
1.4575
1.3717
1.286
1.2003
1.286
0
0
1.7147
1.8861
1.8861
1.6289
1.3717
1.0288
0.7716
0.6859
0.6001
0.6001
0.6859
0.7716
0.8573
0
0
1.8861
1.5432
1.5432
1.5432
1.5432
1.286
1.3717
1.3717
1.5432
1.8004
1.8004
1.7147
1.5432
1.3717
1.1145
0.9431
0.8573
0.7716
0.6859
0.6859
0.7716
0.9431
1.0288
1.2003
1.2003
1.3717
1.4575
1.6289
1.5432
0
0
0
0
1.3717
1.3717
1.3717
1.2003
1.0288
0.8573
0.6859
0.6001
0.5144
0.5144
0.6001
0.6859
0.6859
0
0.8573
0.9431
0.9431
0.9431
0.7716
0.7716
0
0
0
0.8573
1.0288
1.1145
1.1145
1.0288
0.9431
0.7716
0.6001
0.6859
0.6001
0.6001
0.6001
0.6859
0.6859
0.7716
0.8573
1.0288
1.0288
1.5432
1.0288
0
0
1.286
1.1145
1.1145
1.286
1.3717
1.286
1.1145
1.0288
0.8573
0.6001
0.5144
0.5144
0.5144
0.5144
0.6001
0.6859
0
0.9431
1.1145
1.0288
1.1145
1.0288
0
0
1.286
1.2003
1.1145
1.3717
1.3717
1.286
1.1145
0.9431
0.8573
0.6001
0.5144
0.5144
0.5144
0.5144
0.6001
0.6859
0
0
1.3717
1.1145
1.1145
1.0288
0
0
1.2003
1.1145
1.1145
1.2003
1.286
1.1145
0.9431
0.9431
0.8573
0.5144
0.4287
0.4287
0.4287
0.4287
0.5144
0.6001
0.6859
0.7716
0.8573
0.8573
0.9431
0.9431
0.8573
0
0.9431
0.9431
0.9431
1.2003
1.286
1.2003
1.1145
0.9431
1.0288
0.7716
0.7716
0.6859
0.6859
0.6859
0.7716
0.9431
0
1.286
1.286
1.286
1.3717
1.4575
1.286
1.2003
1.286
1.286
1.5432
1.7147
1.8861
1.7147
1.6289
1.3717
1.2003
0.8573
0.7716
0.6859
0.6859
0.6859
0.7716
0.8573
0.9431
1.1145
1.286
1.3717
1.4575
1.3717
0
1.6289
1.3717
1.286
0.9431
1.1145
1.1145
1.0288
1.0288
0.9431
0.6001
0.5144
0.5144
0.5144
0.5144
0.5144
0.5144
0.5144
0.5144
0.6859
0.6859
0.7716
0.7716
0.6859
0.6859
0.6001
0.6001
0.6001
0.6001
0.8573
1.0288
0.9431
0.9431
0.7716
0.6001
0.5144
0.3429
0.3429
0.3429
0.3429
0.5144
0.6859
0.6859
0.8573
0.8573
0.8573
0.9431
0.9431
0.8573
0.8573
0.8573
0.7716
0.8573
0.9431
1.0288
1.0288
0.9431
0.7716
0.6859
0.5144
0.3429
0.3429
0.3429
0.3429
0.5144
0.5144
0.6859
0.7716
0.8573
0.8573
1.1145
1.2003
1.2003
1.2003
1.2003
1.2003
1.286
1.5432
1.6289
1.5432
1.286
1.1145
0.9431
0.6859
0.5144
0.5144
0.5144
0.6859
0.8573
0.8573
0.9431
1.2003
1.1145
1.2003
1.286
1.3717
0
0
1.3717
1.3717
1.4575
1.7147
1.8004
1.7147
1.3717
1.2003
0.9431
0.7716
0.6859
0.6001
0.6001
0.6001
0.6859
0.7716
1.0288
1.1145
1.2003
1.286
1.4575
1.4575
0
0
1.1145
1.3717
1.5432
1.7147
1.8861
1.6289
1.286
1.1145
0.9431
0.7716
0.6859
0.5144
0.5144
0.5144
0.6859
0.8573
0.9431
1.0288
1.1145
1.2003
1.3717
1.3717
1.286
1.2003
1.286
1.286
1.3717
1.6289
1.7147
1.6289
1.3717
1.1145
1.0288
0.6859
0.5144
0.5144
0.5144
0.5144
0.6859
0.8573
0.8573
1.1145
1.1145
1.2003
1.3717
1.3717
0
1.0288
1.3717
1.2003
1.286
1.5432
1.6289
1.4575
1.286
1.1145
1.0288
0.7716
0.6859
0.6859
0.6859
0.6859
0.6859
0.7716
0.8573
0.9431
1.1145
1.0288
1.1145
1.0288
0.9431
0.7716
0.8573
0.8573
0.8573
1.1145
1.286
1.286
1.1145
1.0288
0.8573
0.7716
0.6859
0.6001
0.6001
0.6859
0.7716
0.8573
1.0288
1.0288
1.0288
1.1145
1.0288
1.0288
0
1.286
1.2003
1.2003
1.2003
1.5432
1.5432
1.4575
1.286
1.1145
0.9431
0.6859
0.6859
0.6001
0.6001
0.6859
0.7716
0.8573
0.9431
1.1145
1.1145
1.2003
1.286
1.286
0
1.2003
1.2003
1.2003
1.3717
1.6289
1.6289
1.5432
1.286
1.1145
0.8573
0.7716
0.6001
0.6001
0.6001
0.6859
0.7716
0.8573
0.9431
1.2003
1.1145
1.1145
1.2003
1.3717
0
1.286
1.2003
1.286
1.3717
1.6289
1.8861
1.8004
1.4575
1.2003
0.8573
0.6859
0.6001
0.6001
0.6001
0.6859
0.8573
0.8573
0.9431
1.1145
1.1145
1.1145
0
0
0
0
0
0
1.7147
1.8004
1.8861
1.5432
1.3717
1.1145
0.7716
0.6859
0.6001
0.6001
0.6001
0.6859
0.6859
0.7716
1.0288
1.1145
1.1145
1.2003
1.2003
1.2003
1.2003
1.0288
1.0288
1.1145
1.3717
1.5432
1.6289
1.5432
1.5432
1.286
1.1145
0.8573
0.6001
0.5144
0.5144
0.5144
0.6859
0.7716
0.9431
1.1145
1.2003
1.2003
1.3717
1.3717
1.2003
1.1145
1.1145
1.2003
1.286
1.5432
1.6289
1.4575
1.286
1.1145
0.8573
0.6859
0.5144
0.5144
0.5144
0.5144
0.6859
0.8573
1.1145
1.3717
1.6289
1.6289
1.6289
1.4575
1.4575
1.4575
1.3717
1.3717
1.4575
1.8861
1.9719
1.9719
1.6289
1.6289
1.3717
1.2003
0.9431
0.8573
0.8573
0.8573
0.8573
1.2003
1.3717
1.4575
1.5432
1.8861
2.1434
2.1434
2.1434
1.9719
2.0576
1.2003
2.0576
2.572
2.572
2.3148
1.8861
1.7147
1.3717
1.3717
1.1145
1.1145
0
0.8573
0.9431
1.2003
1.286
1.5432
1.6289
1.8004
2.1434
2.1434
2.0576
1.8861
2.0576
2.0576
2.2291
2.4006
2.4863
2.3148
1.9719
1.7147
1.4575
1.286
0.9431
0.9431
0.8573
0.8573
0.9431
1.1145
1.3717
1.4575
1.6289
1.8004
2.1434
2.1434
2.1434
1.9719
1.9719
2.1434
2.1434
2.4006
2.4863
2.3148
2.0576
1.7147
1.5432
1.1145
1.0288
0.9431
0.9431
0.8573
1.0288
1.2003
1.3717
1.5432
1.6289
1.8861
2.1434
2.0576
2.0576
0
2.0576
2.0576
2.0576
2.4006
2.4006
2.2291
1.9719
1.7147
1.4575
1.2003
0.9431
0.8573
0.8573
0.8573
0.8573
1.2003
1.3717
1.5432
1.5432
1.8004
2.1434
2.0576
2.0576
1.9719
1.8861
2.0576
2.0576
2.3148
2.4006
2.2291
1.7147
1.8004
1.3717
1.1145
0.9431
0.8573
0.8573
0.8573
0.8573
1.1145
1.2003
1.4575
1.5432
1.7147
2.1434
2.0576
1.9719
1.8004
1.8861
1.8861
1.8861
2.2291
2.3148
2.2291
2.1434
1.6289
1.3717
1.0288
0.8573
0.8573
0.7716
0.7716
0.7716
0.9431
1.1145
1.286
1.3717
1.5432
1.6289
1.5432
1.3717
1.286
1.2003
1.2003
1.286
1.6289
1.8004
1.8004
1.6289
1.3717
1.2003
1.0288
0.8573
0.8573
0.8573
1.0288
1.2003
1.286
1.286
1.3717
1.5432
1.7147
1.8861
1.9719
1.8004
1.8004
1.7147
1.8004
1.8861
2.0576
2.2291
2.0576
1.7147
1.5432
1.2003
1.0288
0.8573
0.8573
0.8573
0.8573
1.0288
1.2003
1.286
1.4575
1.4575
1.6289
1.8004
1.7147
1.6289
1.6289
1.6289
1.7147
1.8004
1.9719
2.3148
2.2291
1.8861
1.5432
1.286
0.9431
0.8573
0.7716
0.7716
0.7716
0.8573
1.1145
1.286
1.4575
1.5432
1.7147
1.8004
1.8861
1.8004
1.8004
1.8861
1.8861
1.9719
2.3148
2.572
2.3148
1.8004
1.6289
1.3717
1.0288
0.8573
0.8573
0.8573
0.8573
1.0288
1.2003
1.2003
1.4575
1.6289
1.7147
1.8861
1.8861
1.8004
1.8861
1.8861
1.8004
0
2.4006
2.3148
2.0576
1.8004
1.6289
1.286
1.0288
0.9431
0.8573
0.6859
0.6859
0.8573
1.2003
1.286
1.4575
1.6289
1.8004
1.9719
2.1434
1.9719
1.8861
1.8861
1.9719
2.0576
2.3148
2.4863
2.1434
1.9719
1.8004
1.4575
1.1145
0.8573
0.7716
0.7716
0.7716
0.8573
1.0288
1.2003
1.4575
1.4575
1.8004
1.8861
1.8861
1.8004
1.7147
1.6289
1.7147
1.7147
2.0576
2.3148
2.1434
1.8861
1.5432
1.3717
1.1145
0.8573
0.7716
0.9431
0.9431
1.0288
1.1145
1.3717
1.7147
1.8004
2.0576
1.6289
1.4575
1.3717
1.286
1.2003
0
1.286
1.8004
1.8004
1.8861
1.6289
1.4575
1.4575
1.1145
0.8573
0.7716
0.7716
0.7716
0.7716
1.0288
1.286
1.3717
1.5432
1.8861
2.0576
2.1434
2.0576
1.8861
1.8861
1.8861
1.9719
2.3148
2.2291
2.1434
1.9719
1.6289
1.4575
1.0288
0.8573
0.8573
0.7716
0.7716
0.7716
1.0288
1.286
1.5432
1.7147
1.8861
2.0576
2.0576
1.8861
0
1.9719
1.9719
2.0576
2.2291
2.2291
2.0576
1.8861
1.6289
1.3717
1.0288
0.8573
0.7716
0.7716
0.7716
0.7716
0.9431
1.286
1.3717
1.4575
1.7147
1.8861
1.8861
1.8861
1.7147
1.7147
1.7147
1.8861
2.1434
2.3148
2.0576
1.8004
1.5432
1.286
0.9431
0.8573
0.7716
0.7716
0.7716
0.7716
1.0288
1.2003
1.3717
1.5432
1.8004
1.8004
1.8861
1.8004
1.7147
1.7147
1.7147
2.2291
2.2291
2.2291
2.0576
1.8004
1.4575
1.2003
0.9431
0.7716
0.7716
0.7716
0.9431
0.9431
1.2003
1.4575
1.8004
1.8004
2.1434
2.1434
2.2291
2.2291
2.3148
2.2291
2.1434
1.8004
2.2291
2.3148
1.9719
1.7147
1.4575
1.286
1.0288
0.7716
0.7716
0.6859
0.6859
0.7716
0.9431
1.2003
1.3717
1.6289
1.8004
2.4006
2.4006
2.3148
2.2291
2.2291
2.4006
2.4006
2.7435
2.7435
2.6578
2.3148
1.9719
1.6289
1.2003
1.0288
1.0288
0.9431
1.0288
1.1145
1.2003
1.3717
1.5432
1.8004
1.8861
1.8004
1.7147
1.5432
1.6289
1.5432
1.4575
1.5432
1.9719
2.3148
2.2291
1.9719
1.8861
1.6289
1.2003
1.0288
0.9431
0.9431
0.9431
1.1145
1.3717
1.5432
1.8004
1.8861
2.1434
2.3148
2.2291
2.2291
0
2.1434
2.1434
2.2291
2.572
2.7435
2.572
2.3148
2.0576
1.7147
1.286
Your problem does not seem to be really interesting.
So your better of with classical statistics. No need for windowing, embedding, and machine learning here.
http://devio.us/~wessel/load/load.jpeg
http://devio.us/~wessel/load/load2.jpeg


So your better of with classical statistics. No need for windowing, embedding, and machine learning here.
http://devio.us/~wessel/load/load.jpeg
http://devio.us/~wessel/load/load2.jpeg


Meh, if you insist creating a model using heavy number crunching machine learning....
here is the process:
here is the process:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.0">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="5.0.9" expanded="true" name="Process">
<parameter key="logfile" value="/home/wessel/loaddata.aml"/>
<process expanded="true" height="507" width="705">
<operator activated="true" class="read_csv" compatibility="5.0.9" expanded="true" height="60" name="Read CSV" width="90" x="45" y="30">
<parameter key="file_name" value="/home/wessel/Desktop/loaddata.csv"/>
<parameter key="column_separators" value=" "/>
<parameter key="date_format" value="MM/dd/yyyy"/>
<list key="data_set_meta_data_information"/>
</operator>
<operator activated="false" class="series:moving_average" compatibility="5.0.2" expanded="true" height="76" name="MA_3_cen" width="90" x="180" y="30">
<parameter key="attribute_name" value="load"/>
<parameter key="window_width" value="3"/>
<parameter key="result_position" value="center"/>
<parameter key="keep_original_attribute" value="false"/>
</operator>
<operator activated="false" class="rename" compatibility="5.0.9" expanded="true" height="76" name="Rename" width="90" x="315" y="30">
<parameter key="old_name" value="moving_average(load)"/>
<parameter key="new_name" value="ma3_load"/>
</operator>
<operator activated="true" class="filter_examples" compatibility="5.0.9" expanded="true" height="76" name="Filter Examples" width="90" x="450" y="30">
<parameter key="condition_class" value="no_missing_attributes"/>
</operator>
<operator activated="true" class="series:windowing" compatibility="5.0.2" expanded="true" height="76" name="Windowing" width="90" x="585" y="30">
<parameter key="horizon" value="24"/>
<parameter key="window_size" value="24"/>
<parameter key="create_label" value="true"/>
<parameter key="label_attribute" value="load"/>
</operator>
<operator activated="false" class="principal_component_analysis" compatibility="5.0.9" expanded="true" height="94" name="PCA" width="90" x="45" y="120">
<parameter key="dimensionality_reduction" value="fixed number"/>
<parameter key="number_of_components" value="4"/>
</operator>
<operator activated="true" class="optimize_selection" compatibility="5.0.9" expanded="true" height="94" name="Optimize Selection" width="90" x="180" y="120">
<parameter key="generations_without_improval" value="2"/>
<parameter key="keep_best" value="2"/>
<process expanded="true" height="507" width="784">
<operator activated="true" class="series:sliding_window_validation" compatibility="5.0.2" expanded="true" height="112" name="Validation" width="90" x="186" y="163">
<parameter key="training_window_width" value="24"/>
<parameter key="test_window_width" value="24"/>
<parameter key="horizon" value="24"/>
<parameter key="cumulative_training" value="true"/>
<process expanded="true" height="507" width="165">
<operator activated="true" class="linear_regression" compatibility="5.0.9" expanded="true" height="94" name="Linear Regression" width="90" x="45" y="30">
<parameter key="feature_selection" value="none"/>
</operator>
<connect from_port="training" to_op="Linear Regression" to_port="training set"/>
<connect from_op="Linear Regression" from_port="model" to_port="model"/>
<portSpacing port="source_training" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true" height="507" width="300">
<operator activated="true" class="apply_model" compatibility="5.0.9" expanded="true" height="76" name="Apply Model" width="90" x="45" y="30">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance_regression" compatibility="5.0.9" expanded="true" height="76" name="Performance" width="90" x="45" y="120">
<parameter key="root_mean_squared_error" value="false"/>
<parameter key="correlation" value="true"/>
</operator>
<connect from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
<connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
<connect from_op="Performance" from_port="performance" to_port="averagable 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_averagable 1" spacing="0"/>
<portSpacing port="sink_averagable 2" spacing="0"/>
</process>
</operator>
<connect from_port="example set" to_op="Validation" to_port="training"/>
<connect from_op="Validation" from_port="averagable 1" to_port="performance"/>
<portSpacing port="source_example set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_performance" spacing="0"/>
</process>
</operator>
<operator activated="true" class="select_by_weights" compatibility="5.0.9" expanded="true" height="94" name="Select by Weights" width="90" x="315" y="120"/>
<operator activated="true" class="series:sliding_window_validation" compatibility="5.0.2" expanded="true" height="112" name="Validation2" width="90" x="450" y="120">
<parameter key="training_window_width" value="24"/>
<parameter key="test_window_width" value="24"/>
<parameter key="horizon" value="24"/>
<parameter key="cumulative_training" value="true"/>
<process expanded="true" height="507" width="300">
<operator activated="true" class="linear_regression" compatibility="5.0.9" expanded="true" height="94" name="LinearR2" width="90" x="180" y="30">
<parameter key="feature_selection" value="none"/>
</operator>
<connect from_port="training" to_op="LinearR2" to_port="training set"/>
<connect from_op="LinearR2" from_port="model" to_port="model"/>
<portSpacing port="source_training" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true" height="507" width="300">
<operator activated="true" class="apply_model" compatibility="5.0.9" expanded="true" height="76" name="ApplyM2" width="90" x="45" y="30">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="write_aml" compatibility="5.0.9" expanded="true" height="60" name="Write AML" width="90" x="60" y="160">
<parameter key="example_set_file" value="/home/wessel/loaddata.dat"/>
<parameter key="attribute_description_file" value="/home/wessel/loaddata.aml"/>
</operator>
<operator activated="true" class="performance_regression" compatibility="5.0.9" expanded="true" height="76" name="Perf2" width="90" x="45" y="300">
<parameter key="root_mean_squared_error" value="false"/>
<parameter key="correlation" value="true"/>
</operator>
<connect from_port="model" to_op="ApplyM2" to_port="model"/>
<connect from_port="test set" to_op="ApplyM2" to_port="unlabelled data"/>
<connect from_op="ApplyM2" from_port="labelled data" to_op="Write AML" to_port="input"/>
<connect from_op="Write AML" from_port="through" to_op="Perf2" to_port="labelled data"/>
<connect from_op="Perf2" from_port="performance" to_port="averagable 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_averagable 1" spacing="0"/>
<portSpacing port="sink_averagable 2" spacing="0"/>
</process>
</operator>
<operator activated="true" class="read_aml" compatibility="5.0.9" expanded="true" height="60" name="Read AML" width="90" x="447" y="300">
<parameter key="attributes" value="/home/wessel/loaddata.aml"/>
<parameter key="column_separators" value=" "/>
</operator>
<connect from_op="Read CSV" from_port="output" to_op="Filter Examples" to_port="example set input"/>
<connect from_op="Filter Examples" from_port="example set output" to_op="Windowing" to_port="example set input"/>
<connect from_op="Windowing" from_port="example set output" to_op="Optimize Selection" to_port="example set in"/>
<connect from_op="Optimize Selection" from_port="example set out" to_op="Select by Weights" to_port="example set input"/>
<connect from_op="Optimize Selection" from_port="weights" to_op="Select by Weights" to_port="weights"/>
<connect from_op="Select by Weights" from_port="example set output" to_op="Validation2" to_port="training"/>
<connect from_op="Select by Weights" from_port="original" to_port="result 3"/>
<connect from_op="Validation2" from_port="model" to_port="result 1"/>
<connect from_op="Validation2" from_port="averagable 1" to_port="result 4"/>
<connect from_op="Read AML" from_port="output" to_port="result 2"/>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="144"/>
<portSpacing port="sink_result 2" spacing="0"/>
<portSpacing port="sink_result 3" spacing="0"/>
<portSpacing port="sink_result 4" spacing="0"/>
<portSpacing port="sink_result 5" spacing="0"/>
</process>
</operator>
</process>
No they are not the same, but they are related.
Look at the scatter plot of predicted load vs actual load.
When a data point is predicted correctly it lies exactly on the diagonal.
You see that all data points that are not 0 are predicted with only a small error.
The error is bigger in data points that are 0, which is expected because they are anomalous values.
I could have used "mean absolute error" instead of "correlation".
But the nice thing about "correlation" is that its invariant to the dataset.
If I would multiply all data points by a factor 100, "mean absolute error" would go up by a factor 100.
Correlation stays the same, since its normalized between -1 and 1.
Look at the scatter plot of predicted load vs actual load.
When a data point is predicted correctly it lies exactly on the diagonal.
You see that all data points that are not 0 are predicted with only a small error.
The error is bigger in data points that are 0, which is expected because they are anomalous values.
I could have used "mean absolute error" instead of "correlation".
But the nice thing about "correlation" is that its invariant to the dataset.
If I would multiply all data points by a factor 100, "mean absolute error" would go up by a factor 100.
Correlation stays the same, since its normalized between -1 and 1.
An alternative would be: Arima:
http://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
http://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
day_time, load
1, .2934
2, .1983
....
n .1902
Then use the windowing operator with the appropriate embedding dimension.
Then use k-nn or linear regression as a learner.
If you upload like 50 rows of data I'll make you an example process.