An exclusive raffle opportunity for active members like you! Complete your profile, answer questions and get your first accepted badge to enter the raffle.
<div><?xml version="1.0" encoding="UTF-8"?><process version="10.2.000"></div><div> <context></div><div> <input/></div><div> <output/></div><div> <macros/></div><div> </context></div><div> <operator activated="true" class="process" compatibility="10.2.000" expanded="true" name="Process"></div><div> <parameter key="logverbosity" value="init"/></div><div> <parameter key="random_seed" value="2001"/></div><div> <parameter key="send_mail" value="never"/></div><div> <parameter key="notification_email" value=""/></div><div> <parameter key="process_duration_for_mail" value="30"/></div><div> <parameter key="encoding" value="SYSTEM"/></div><div> <process expanded="true"></div><div> <operator activated="true" class="retrieve" compatibility="10.2.000" expanded="true" height="68" name="Retrieve Deals" width="90" x="45" y="391"></div><div> <parameter key="repository_entry" value="//Samples/data/Deals"/></div><div> <description align="center" color="transparent" colored="false" width="126">Old data</description></div><div> </operator></div><div> <operator activated="true" class="naive_bayes" compatibility="10.2.000" expanded="true" height="82" name="Naive Bayes" width="90" x="179" y="391"></div><div> <parameter key="laplace_correction" value="true"/></div><div> <description align="center" color="transparent" colored="false" width="126">create a model based on &quot;old data&quot;</description></div><div> </operator></div><div> <operator activated="true" class="retrieve" compatibility="10.2.000" expanded="true" height="68" name="Retrieve Deals-Testset" width="90" x="179" y="187"></div><div> <parameter key="repository_entry" value="//Samples/data/Deals-Testset"/></div><div> <description align="center" color="transparent" colored="false" width="126">New data</description></div><div> </operator></div><div> <operator activated="true" class="multiply" compatibility="10.2.000" expanded="true" height="103" name="Multiply" width="90" x="313" y="187"/></div><div> <operator activated="true" class="apply_model" compatibility="10.2.000" expanded="true" height="82" name="Apply Old Model" width="90" x="447" y="391"></div><div> <list key="application_parameters"/></div><div> <description align="center" color="transparent" colored="false" width="126">apply old model on new, unseen data</description></div><div> </operator></div><div> <operator activated="true" class="performance_classification" compatibility="10.2.000" expanded="true" height="82" name="Performance Old" width="90" x="849" y="391"></div><div> <parameter key="main_criterion" value="first"/></div><div> <parameter key="accuracy" value="true"/></div><div> <parameter key="classification_error" value="false"/></div><div> <parameter key="kappa" value="false"/></div><div> <parameter key="weighted_mean_recall" value="false"/></div><div> <parameter key="weighted_mean_precision" value="false"/></div><div> <parameter key="spearman_rho" value="false"/></div><div> <parameter key="kendall_tau" value="false"/></div><div> <parameter key="absolute_error" value="false"/></div><div> <parameter key="relative_error" value="false"/></div><div> <parameter key="relative_error_lenient" value="false"/></div><div> <parameter key="relative_error_strict" value="false"/></div><div> <parameter key="normalized_absolute_error" value="false"/></div><div> <parameter key="root_mean_squared_error" value="false"/></div><div> <parameter key="root_relative_squared_error" value="false"/></div><div> <parameter key="squared_error" value="false"/></div><div> <parameter key="correlation" value="false"/></div><div> <parameter key="squared_correlation" value="false"/></div><div> <parameter key="cross-entropy" value="false"/></div><div> <parameter key="margin" value="false"/></div><div> <parameter key="soft_margin_loss" value="false"/></div><div> <parameter key="logistic_loss" value="false"/></div><div> <parameter key="skip_undefined_labels" value="true"/></div><div> <parameter key="use_example_weights" value="true"/></div><div> <list key="class_weights"/></div><div> </operator></div><div> <operator activated="true" class="update_model" compatibility="10.2.000" expanded="true" height="82" name="Update Model" width="90" x="581" y="187"></div><div> <description align="center" color="transparent" colored="false" width="126">update the model with new data</description></div><div> </operator></div><div> <operator activated="true" class="apply_model" compatibility="10.2.000" expanded="true" height="82" name="Apply New Model" width="90" x="715" y="187"></div><div> <list key="application_parameters"/></div><div> <description align="center" color="transparent" colored="false" width="126">apply the updated model on the new data</description></div><div> </operator></div><div> <operator activated="true" class="performance_classification" compatibility="10.2.000" expanded="true" height="82" name="Performance New" width="90" x="849" y="187"></div><div> <parameter key="main_criterion" value="first"/></div><div> <parameter key="accuracy" value="true"/></div><div> <parameter key="classification_error" value="false"/></div><div> <parameter key="kappa" value="false"/></div><div> <parameter key="weighted_mean_recall" value="false"/></div><div> <parameter key="weighted_mean_precision" value="false"/></div><div> <parameter key="spearman_rho" value="false"/></div><div> <parameter key="kendall_tau" value="false"/></div><div> <parameter key="absolute_error" value="false"/></div><div> <parameter key="relative_error" value="false"/></div><div> <parameter key="relative_error_lenient" value="false"/></div><div> <parameter key="relative_error_strict" value="false"/></div><div> <parameter key="normalized_absolute_error" value="false"/></div><div> <parameter key="root_mean_squared_error" value="false"/></div><div> <parameter key="root_relative_squared_error" value="false"/></div><div> <parameter key="squared_error" value="false"/></div><div> <parameter key="correlation" value="false"/></div><div> <parameter key="squared_correlation" value="false"/></div><div> <parameter key="cross-entropy" value="false"/></div><div> <parameter key="margin" value="false"/></div><div> <parameter key="soft_margin_loss" value="false"/></div><div> <parameter key="logistic_loss" value="false"/></div><div> <parameter key="skip_undefined_labels" value="true"/></div><div> <parameter key="use_example_weights" value="true"/></div><div> <list key="class_weights"/></div><div> <description align="center" color="transparent" colored="false" width="126">Increased performance on new dataset</description></div><div> </operator></div><div> <connect from_op="Retrieve Deals" from_port="output" to_op="Naive Bayes" to_port="training set"/></div><div> <connect from_op="Naive Bayes" from_port="model" to_op="Apply Old Model" to_port="model"/></div><div> <connect from_op="Retrieve Deals-Testset" from_port="output" to_op="Multiply" to_port="input"/></div><div> <connect from_op="Multiply" from_port="output 1" to_op="Update Model" to_port="example set"/></div><div> <connect from_op="Multiply" from_port="output 2" to_op="Apply Old Model" to_port="unlabelled data"/></div><div> <connect from_op="Apply Old Model" from_port="labelled data" to_op="Performance Old" to_port="labelled data"/></div><div> <connect from_op="Apply Old Model" from_port="model" to_op="Update Model" to_port="model"/></div><div> <connect from_op="Update Model" from_port="example set" to_op="Apply New Model" to_port="unlabelled data"/></div><div> <connect from_op="Update Model" from_port="model" to_op="Apply New Model" to_port="model"/></div><div> <connect from_op="Apply New Model" from_port="labelled data" to_op="Performance New" to_port="labelled data"/></div><div> <portSpacing port="source_input 1" spacing="0"/></div><div> <portSpacing port="sink_result 1" spacing="0"/></div><div> </process></div><div> </operator></div><div></process></div><div></div>